
On-line training of
Deep Surrogates models

Numerical Analysis School EDF-INRIA-CEA
Saclay, 19 june 2025

Bruno.raffin@inria.fr
Alejandro.Ribes@edf.fr

mailto:Bruno.raffin@inria.fr

| 2

GENERAL CONTEXT:
EDF – ELECTRICITÉ DE FRANCE

▪ Electric utility company

▪ 58 active nuclear reactors in France (all PWRs)

▪ EDF Energy in UK
◻ 8 nuclear power stations (7 AGR)

▪ EDF R&D
◻ About 2,000 researchers
◻ Saclay 🡪
◻ Several top500 supercomputers

• Currently 3 clusters

◻ Extensive use of numerical simulation

General Context

| 3

GENERAL CONTEXT: NUMERICAL SIMULATIONS INVOLVING
MECHANICS

General Context

Seismic analysis

Core vessel integrity Primary circuit integrity

Storage

Containment building
Integrity

Turbine behaviour

Alternator
behaviour

An arsenal of home-tailored numerical simulation softwares

4

| 5

GENERAL CONTEXT

▪ Numerical modelling of EDF components and structures
• Structural mechanics (Code_Aster)
• Thermohydraulics (Code_Saturne, NEPTUNE_CFD)
• Electromagnetism (Code_CARMEL3D)
• Neutronics (ANDROMEDE)
• Surface hydraulics (TELEMAC-MASCARET)

▪ All these physics domains require generic functions for numerical simulations

General Context

= SALOME Platform

 Computation scheduling
(workflow, distribution)

 Complex data processing
(fields, matrix, etc)

 3D Modelling
(CAD, meshing, vizualisation)

+ +

Visualization

IN-SITU VISUALIZATION

Super-computer

HPC Achilles Heel: I/Os
Applications efficiency can be significantly impaired by I/Os

Flops growing faster than I/O bandwidth

Compute node
Compute node w/ node-local storage
[Network/PCIe]-attached storage
Burst-buffer / Dedicated nodes
Gateway nodes / IO forwarding nodes
Flash-based PFS / Short-term
HDD-based PFS / [Medium/long]-term

The hardware solution: more
complex storage heirarchies

The software solution: perform less I/Os

7

Traditional Visualization

In-situ Visualization

Visualization

VisualizationVisualization

Super-computer

IN-SITU VISUALISATION

LARGE PARAMETRIC STUDIES: PROBLEM

▪ Multi-run simulations are:
◻ Multidimensional

• Space (3D, 2D, 1D)
• Time

◻ Multivalued (temperature,
pression, height, etc)

◻ Multivariate (1,000 or 100,000?)
Super-computer

48TB some MB

Post-traitement

LARGE PARAMETRIC STUDIES: PROBLEM

Time Step

Variable Spatial CoordinatesMean

PROBLEM:

Melissa

48To Some Mo

LARGE PARAMETRIC STUDIES: THE SOLUTION IS MELISSA

Iterative Mean (ith update):

Iterative standard deviation (ith update):

Zero intermediate files thanks to iterative statistics

13

Iterative statistical library (in Python):
 https://github.com/IterativeStatistics

Melissa

IterativeStatistics

Fluid simulation with Code_Saturne [EDF]

8 simulations per group, 1000 groups, each one
running on 512 cores

Generate 48TB of intermediate results

Server size: enough nodes to work in memory (491GB)

 6 parameters,
 3 per injector:
• Dye concentration
• Injection width
• Injection duration

Curie Machine (80K cores)

9M hexahedral mesh – 100
timesteps

Ubiquitous Sobol’ indices: 9x100X2=1800M
indices (dye concentration)

Melissa
1 group results saved to disk
1 simulation no output

Run 13% faster on average than when writing to disk

Elastic execution
 up to 28K cores

Injector 1

Die concentration

Width

Duration

WORKS

WORKS

Supercomputing 2018

80 000 simulations

On-line processing of 288T

Sobol Indices

Quantiles

A. Ribes, T. Terraz, Y. Fournier, B. Iooss, and B. Raffin. Large Scale Computation of Quantiles using Melissa. In Proceedings of The International Conference for High Performance
Computing, Networking, Storage, and Analysis, Dallas, Texas USA, November 2018 (SC’18).

Substitution model
(ROM, metamodel,

surrogate)

Data

User’s Interaction
(Engineer, Scientist)

Assimilation

Visualization

Surrogates and Digital Twins :

Numerical Simulations

Equation (PDE) Discretization Solver code

Scaling requires parallelized solvers to run on supercomputers.

The essence of HPC !

17

Generate a trajectory:

Deep Surrogates

Train a NN approximating the PDE solution.

Expected benefits: faster than traditional solver, less memory consuming

Two main approaches:

- No training data set required: PINNs

- Training data set required:

Neural Operators (FNO), GNN, Vision Transformer(ViT), ….

Use a classical solver to generate the training data set (synthetic data :-)

 The NN can be:

• Autoregressive:

• Direct:

18

Deep Surrogates

Training from one trajectory: Neural-GCM-arXiv:2311.07222

Training from multiple trajectories:

● Varying initial conditions

● Varying the discretization: GNS-arXiv:2002.09405
● Varying the PDE - Fondation models for PDES

○ Poseidon- arXiv:2405.19101
○ PDE-Transformer -arXiv:2505.24717

19

Let’s go back to the basics

Compute resources
(GPUs)

20

A neural architecture
A dataset

Software Stack: Pytorch, Jax

Offline Training

Batch

Repeat data through epochs if not enough available.

Read files

21

Multi-GPU Training

22

The gradient descent is performed once per batch and the associated parameter update
is:

If we split the batch in tow parts:

We can rewrite the weight update:

We’ve got one way to parallelize training ! This is called Distributed Data Parallelism (DDP)

Distributed Data Parallelism

23

 Algorithm with 2 GPUs:

1. Duplicate the Neural Network on each GPU
2. Split the batch in two equal parts
3. Each neural network processes its ½ batch and computes the associated gradients:

1. Exchange the results between GPUs (all-reduce op)

2. Each NN can updates its weights with the global gradient (same update on each
duplicate, so NN copies stay consistent):

We can go almost twice faster!

DDP: All-Reduce

Organizing the communications in a smart way, it’s possible to get a cost that grows
sub-linearly with the number of GPUs:

It’s called an All-Reduce operation, available in standard collective communications libraries
like MPI, Gloo, NCCL, RCCL.

It’s embedded in libraries like Pytorch, Jax and easy to deploy.

Beware that at high GPU counts you need to increase the size of the batch to keep them busy,
which in turn, requires an adapted learning rate decay strategies.

GPU
1 GPU

2 GPU
N

GPU
3

All-Reduce

24

Offline Training

Multi-parametric: run
ensemble of solver instances

Run solver to generate a data set
Write to files

25

Offline Training

Batch

1. Data set size limited by storage capacities

2. Compute speed impaired by I/O bottleneck

3. No possibility to steer data generation based on NN
needs (active learning)

26

Online Training

Batch

1. Data set size limited by storage capacities

2. Compute speed impaired by I/O bottleneck

3. No possibility to steer data generation based on NN
needs

Define next simulations to run (Active Learning - See Sofya Dymchenko work)

27

Melissa

A HPC empowered framework for handling online training at large scale:

• Scalable (parallel simulation, parallel training, concurrent simulation executions)

• Elastic (number of concurrent running simulations can vary over time to adapt to
compute resource availability)

• Fault-tolerant (automatic component restart in case of failure)

https://gitlab.inria.fr/melissa

28

https://gitlab.inria.fr/melissa

Launcher
• Control app

deployment
• Manage Recovery on

Server or Client Fault

Batch Scheduler

Submit jobsJob Status

Waiting Jobs

Melissa Architecture

29

Launcher
• Control app

deployment
• Manage Recovery on

Server or Client Fault

Run Server

Batch Scheduler

Submit jobsJob Status

Waiting Jobs

Melissa Architecture

Checkpoints

All Reduce for Data Parallelism

 Multi-GPU
Training
Server

 Reservoirs

30

Launcher
• Control app

deployment
• Manage Recovery on

Server or Client Fault

Batch Scheduler

Submit jobsJob Status

Waiting Jobs

Melissa Architecture

Checkpoints

All Reduce for Data Parallelism

 Multi-GPU
Training
Server

 Reservoirs

Request Client Executions

Run Jobs Parallel
Simulation Run

31

Launcher
• Control app

deployment
• Manage Recovery on

Server or Client Fault

Batch Scheduler

Submit jobsJob Status

Waiting Jobs

Melissa Architecture

Checkpoints

All Reduce for Data Parallelism

 Multi-GPU
Training
Server

 Reservoirs

Request Client Executions

Run Jobs Parallel
Simulation Run

Parallel
Simulation Run

Dynamic
Connections

Clients

32

Launcher
• Control app

deployment
• Manage Recovery on

Server or Client Fault

Batch Scheduler

Submit jobsJob Status

Waiting Jobs

Melissa Architecture

Checkpoints

All Reduce for Data Parallelism

 Multi-GPU
Training
Server

 Reservoirs

Request Client Executions

Run Jobs Parallel
Simulation Run

Parallel
Simulation Run

Dynamic
Connections

Clients

33

Launcher
• Control app

deployment
• Manage Recovery on

Server or Client Fault

Batch Scheduler

Submit jobsJob Status

Waiting Jobs

Melissa Architecture

Checkpoints

All Reduce for Data Parallelism

 Multi-GPU
Training
Server

 Reservoirs

Request Client Executions

Run Jobs Parallel
Simulation Run

Parallel
Simulation Run

Parallel
Simulation Run

Dynamic
Connections

Clients

User Monitoring Interface
34

Launcher
• Control app

deployment
• Manage Recovery on

Server or Client Fault

Run Jobs Batch Scheduler

Request Client Executions

Submit jobs

Parallel
Simulation Run

Job Status

Checkpoints

Parallel
Simulation Run

Parallel
Simulation Run

Waiting Jobs

All Reduce for Data Parallelism

Dynamic
Connections

 Multi-GPU
Training
Server

Clients

 Reservoirs

Melissa Architecture

User Monitoring Interface
35

Online Training

Batch

Online training is subject to 2 main bias:

1. Intra-simulation bias:
Data are produced in time order (t

0
, t

1
, t

2
,…,t

n
)

2. Inter-simulation bias:
The number of concurrent running simulations depends on

compute resource availability 36

Mitigation Strategy: Reservoir Buffer

BatchReservoir Buffer

Thread receives and adds
data to Reservoir Thread extracts batch

from Reservoir

Reservoir buffer designed to:
1. Keep GPU from starving (potentially repeating data in batches)
2. Increase data mixing to mitigate bias due to online training

37

Reservoir Buffer

Batch: random
select K samples
from Reservoir

Reservoir Buffer (fixed size N)

Already seen dataNew data

Expected sample residency time : N-1
New received data evicts
already seen one in Reservoir

ThreadThread

Reservoir buffer designed to:
1. Keep GPU from starving:

• Build batch of already seen data

2. Increase data mixing to mitigate bias due to online training:
• Random selection in Reservoir (only once watermark reached)

38

A heat transport example

Input (t, TIC, Tx1, Tx2, Ty1,
Ty2)

Output
(T)

6 parameters (5 temperatures + time)
Temperature in [100,500]K
100 time steps, Cartesian grid 1000 x 1000

340M parameters

Experiments: 2D Heat PDE

39

The Reservoir implementation mitigates
efficiently the bias in training data

250 simulations, 1 GPU for training, 50 nodes for data
generation.
Learning rate updates at 1000 and 2000 batches

Buffer MSE Time
(Hours)

Offline 83.1 0.93
FIFO 391 0.081
FIRO 135 0.083
Reservoir 80.3 0.093

Bias Mitigation
Offline training:

• Single epoch
• Reference MSE (no bias)

Online training:
• FIFO: First-in First-out Buffer
• FIRO: First-in Random-out

Buffer
• Reservoir

40

The Reservoir scales to multiple GPUsAs before (250 simulations) but with 2&4 GPUs.
Expected same MSE (same data):

• Offline & FIRO: lower validation as
#GPU increases: larger batch size & less
optimization steps

• Reservoir: Not enough data, so
compensate with already seen data,
training on almost 5x samples, leading to
a better validation MSE (but not time
gains)

Buffer GPUs MSE Time (Hours)

Offline 1 83.1 0.93

Offline 4 218 0.10

FIRO 1 135 0.083

FIRO 4 197 0.082
Reservoir 1 80.3 0.093

Reservoir 4 65.0 0.095Learning rate halved every 10k
sample

Multi GPU Training

41

The Reservoir scales to multiple GPUsAs before (250 simulations) but with 2&4 GPUs.
Expected same MSE (same data):

• Offline & FIRO: lower validation as
#GPU increases: larger batch size & less
optimization steps

• Reservoir: Not enough data, so
compensate with already seen data,
training on almost 5x samples, leading to
a better validation MSE (but no time
gains)

Buffer GPUs MSE Time (Hours)

Offline 1 83.1 0.93

Offline 4 218 0.10

FIRO 1 135 0.083

FIRO 4 197 0.082
Reservoir 1 80.3 0.093

Reservoir 4 65.0 0.095Learning rate halved every 10k
sample

Multi GPU Training

42

The Reservoir scales to multiple GPUsAs before (250 simulations) but with 2&4 GPUs.
Expected same MSE (same data):

• Offline & FIRO: lower validation as
#GPU increases: larger batch size & less
optimization steps

• Reservoir: Not enough data, so
compensate with already seen data,
training on almost 5x samples, leading to
a better validation MSE (but not time
gains)

Buffer GPUs MSE Time (Hours)

Offline 1 83.1 0.93

Offline 4 218 0.10

FIRO 1 135 0.083

FIRO 4 197 0.082
Reservoir 1 80.3 0.093

Reservoir 4 65.0 0.095Learning rate halved every 10k
sample

Multi GPU Training

43

Offline training: 250 simulations, 100 epochs, 100 GB
dataset, 24.5h training on 4 GPUs

Online training: 5 120 cores to run 20 000 simulations
generating 8TB of data processed online with 4 GPUs
in 1.9 h

Comparing online and offline training
for the same number of batches.

Unleashing Online Training

Training online is 12x faster, and validation MSE 47%
lower.

44

Online improves training sustainability
Training
Setting

Dataset
Size
(GB)

Time
(Hour

s)

Cost
(€)

Offline with
data
generation

100 24.5 51.60

Offline
without data
generation

100 24.3 43.33

Online 8,000 1.97 63.8

Hypothetic
offline

8,000 24.3 512

Resource Cost (€)

CPU (kh/core) 6.36

GPU (kh/GPU) 382

SSD Storage (TB) 59.4

Source GENCI
IDRIS

Cost

45

Online improves training sustainability
Training
Setting

Dataset
Size
(GB)

Time
(Hour

s)

Cost
(€)

Offline with
data
generation

100 24.5 51.60

Offline
without data
generation

100 24.3 43.33

Online 8,000 1.97 63.8

Hypothetic
offline

8,000 24.3 512

Resource Cost (€)

CPU (kh/core) 6.36

GPU (kh/GPU) 382

SSD Storage (TB) 59.4

Source GENCI
IDRIS

Cost

46

Online improves training sustainability
Training
Setting

Dataset
Size
(GB)

Time
(Hour

s)

Cost
(€)

Offline with
data
generation

100 24.5 51.60

Offline
without data
generation

100 24.3 43.33

Online 8,000 1.97 63.8

Hypothetic
offline

8,000 24.3 512

Resource Cost (€)

CPU (kh/core) 6.36

GPU (kh/GPU) 382

SSD Storage (TB) 59.4

Source GENCI
IDRIS

Cost

47

24H at least

Online improves training sustainability
Steps to move to on-line training

48

1. Instrument the simulation code
- 3 functions API: melissa_init, melissa_send, melissa_finalize
- Supports: Fortran, C/C++ and Python

2. Inherit a base server class and customize to your needs:

Set the sampler for the simulation parameters:

class HeatPDEServerDL(TorchServer):

 """Use-case specific server"""

 def __init__(self, config_dict: Dict[str, Any]):

 super().__init__(config_dict)

Get access to configuration variables:

 study_options = self.config_dict["study_options"]

 self.mesh_size = study_options["mesh_size"]

 Tmin, Tmax = study_options['parameter_range']

 # Set random uniform sampling

 self.set_parameter_sampler(\

 sampler_t=ParameterSamplerType.RANDOM_UNIFORM,\

 l_bounds=[Tmin],\

 u_bounds=[Tmax],\

 seed=123

)

Online improves training sustainability
Steps to move to on-line training

49

@override

 def process_simulation_data(self, msg: SimulationData, config_dict: dict):

 field = "temperature"

 # cast msg.data to float32

 x = torch.from_numpy(

 np.array(msg.parameters[-self.nb_parameters:] + [msg.time_step], dtype=np.float32)

)

 y = torch.from_numpy(msg.data[field].astype(np.float32))

 return x, y

 Data transformation from reservoir to batch:

Online improves training sustainability
Steps to move to on-line training

50

"launcher_config": {
 "scheduler": "slurm-semiglobal",
 "scheduler_arg_server": [
 "--qos=qos_gpu-dev",
 "--account=igf@v100",
 "--nodes=1",
 "--ntasks=2",
 "--gres=gpu:2",
 "--cpus-per-task=5",
 "--threads-per-core=1",
 "--time=01:00:00"
],
 "scheduler_arg_client": [
 "--ntasks=1"
 ….
],
 ….

3. Adapt the configuration to your need (here set up config for using Slurm):

Online improves training sustainability
Steps to move to on-line training

51

melissa-launcher --config_name my_config

4. Start everything:

Custom data management (usually at Reservoir side), may be needed
depending on your training scheme for autoregressive models

Conclusion

Online training for deep surrogates with Melissa: unlock training from very large
data sets

- Gains on generalization, training time, GPU usage

Very soon: support for APE-Benchmark suite

(arXiv:2411.00180)

Project: support of SBI (Simulation Based Inference)

https://sbi-dev.github.io/sbi/latest/

52

linktr.ee/melissa.inria

https://sbi-dev.github.io/sbi/latest/

