

On-line training of Deep Surrogates models

Numerical Analysis School EDF-INRIA-CEA Saclay, 19 june 2025

> Bruno.raffin@inria.fr Alejandro.Ribes@edf.fr

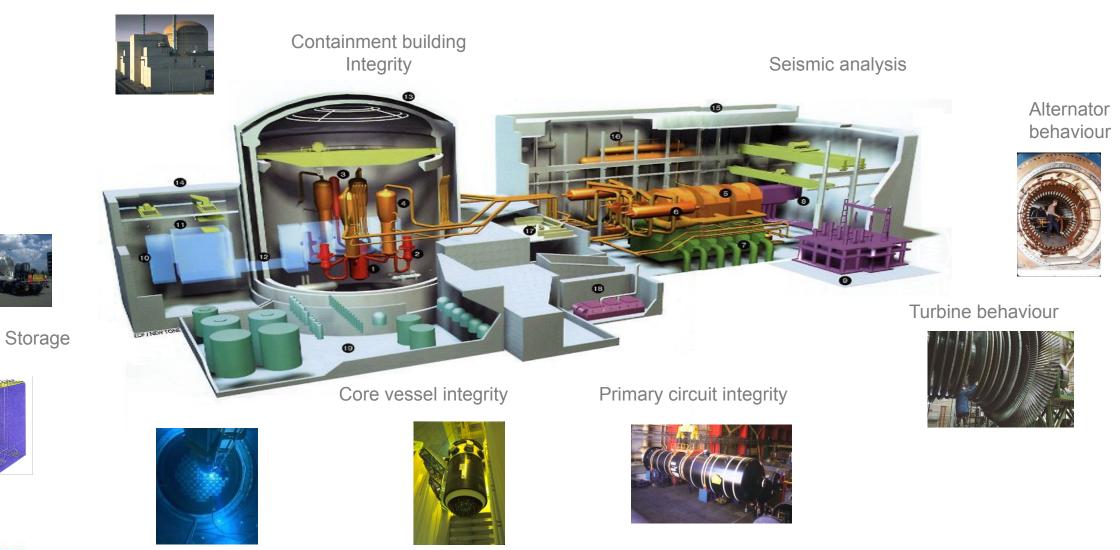
GENERAL CONTEXT: EDF – ELECTRICITÉ DE FRANCE

- Electric utility company
- 58 active nuclear reactors in France (all PWRs)
- EDF Energy in UK
 - 8 nuclear power stations (7 AGR)

EDF R&D

- About 2,000 researchers
- Saclay
- Several top500 supercomputers
 - Currently 3 clusters
- Extensive use of numerical simulation

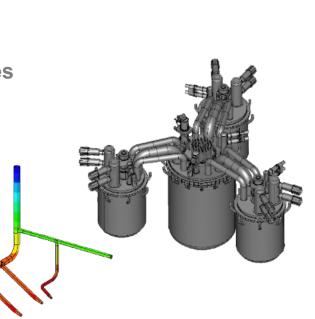
GENERAL CONTEXT: NUMERICAL SIMULATIONS INVOLVING MECHANICS

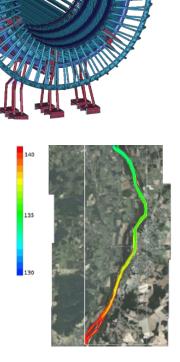


An arsenal of home-tailored numerical simulation softwares

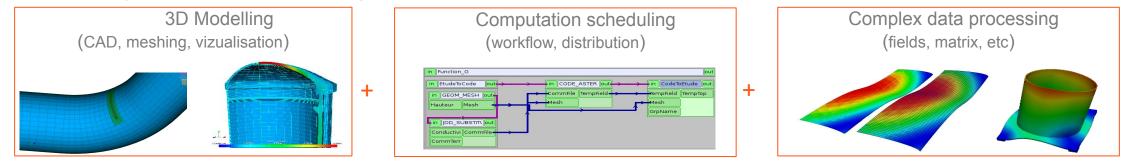
GENERAL CONTEXT

- Numerical modelling of EDF components and structures
 - Structural mechanics (*Code_Aster*)
 - Thermohydraulics (*Code_Saturne*, *NEPTUNE_CFD*)
 - Electromagnetism (*Code_CARMEL3D*)
 - Neutronics (ANDROMEDE)
 - Surface hydraulics (*TELEMAC-MASCARET*)



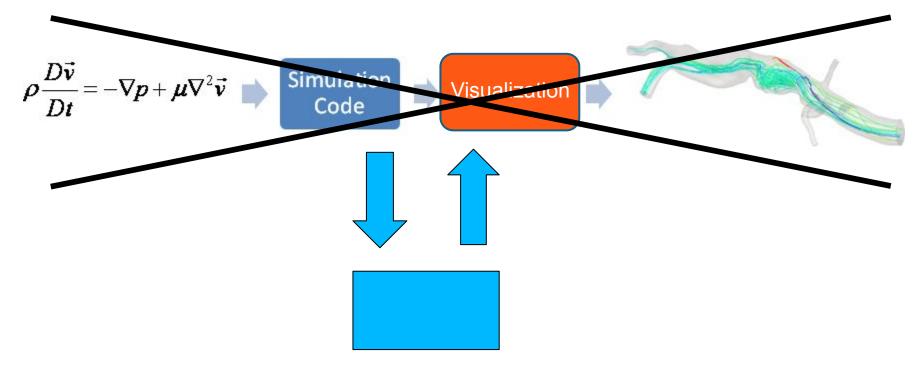


• All these physics domains require generic functions for numerical simulations



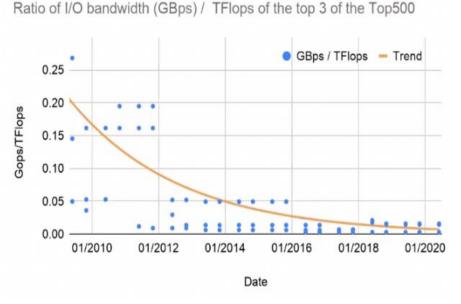
= SALOME Platform

IN-SITU VISUALIZATION



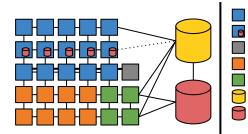
HPC Achilles Heel: I/Os

Applications efficiency can be significantly impaired by I/Os



Flops growing faster than I/O bandwidth

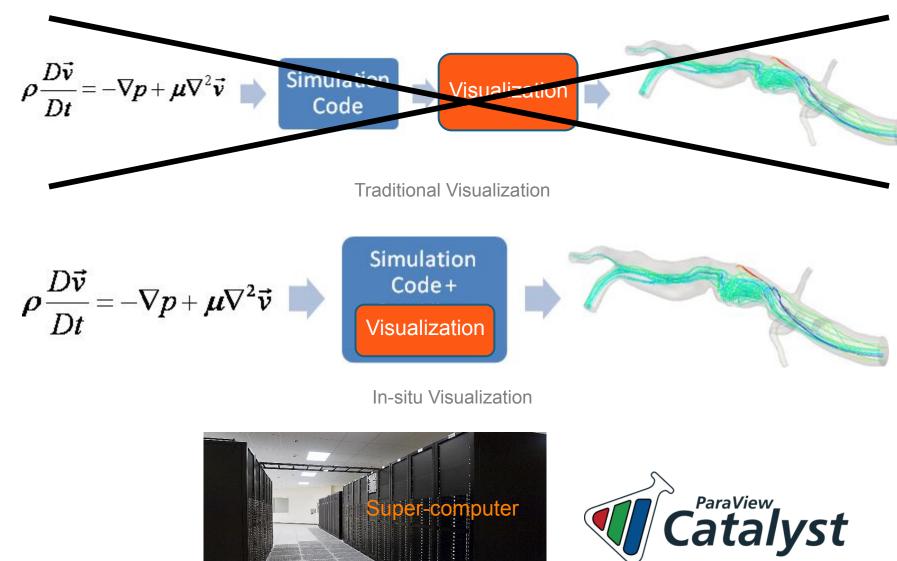
The hardware solution: more complex storage heirarchies



Compute node
 Compute node w/ node-local storage
 [Network/PCIe]-attached storage
 Burst-buffer / Dedicated nodes
 Gateway nodes / IO forwarding nodes
 Flash-based PFS / Short-term
 HDD-based PFS / [Medium/long]-term

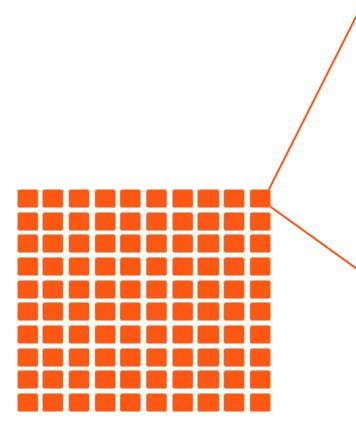
The software solution: perform less I/Os

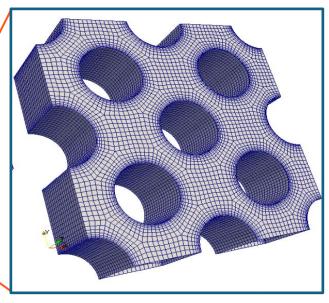
IN-SITU VISUALISATION



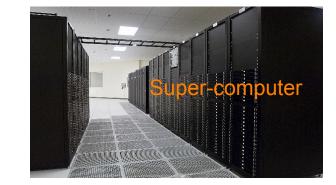
ATTENT AND A DECEMBER OF A

LARGE PARAMETRIC STUDIES: PROBLEM



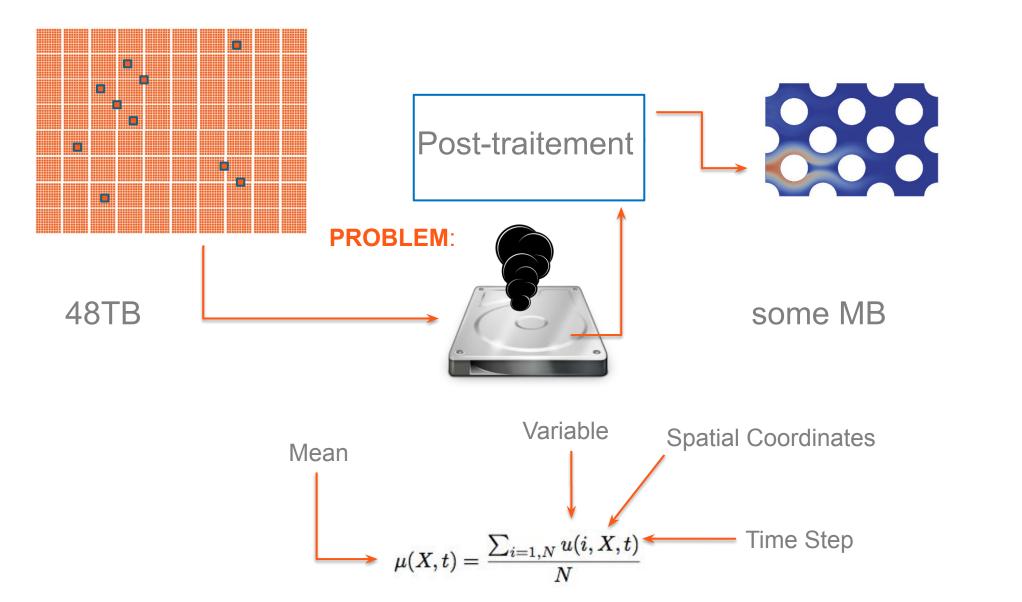


- Multi-run simulations are:
 - Multidimensional
 - Space (3D, 2D, 1D)
 - Time
 - Multivalued (temperature, pression, height, etc)
 - Multivariate (1,000 or 100,000?)



	╨╾╴╴			

LARGE PARAMETRIC STUDIES: PROBLEM



LARGE PARAMETRIC STUDIES: THE SOLUTION IS MELISSA

48To

Some Mo

Zero intermediate files thanks to iterative statistics

Iterative Mean (ith update):

$$\mu_i(X,t) = \mu_{i-1}(X,t) + \frac{1}{i}(u(i,X,t) - \mu_{i-1}(X,t))$$

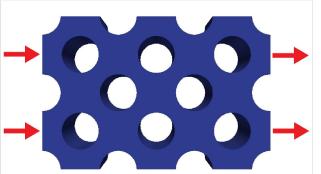
Iterative standard deviation (ith update):

 $V_i(X,t) = V_{i-1}(X,t)$ $+ (u(i,X,t) - \mu_{i-1}(X,t))(u(i,X,t) - \mu_i(X,t))$ Iterative statistical library (in Python): https://github.com/IterativeStatistics

Fluid simulation with Code_Saturne [EDF]

9M hexahedral mesh – 100

- timesteps
 - 6 parameters, 3 per injector:
 - 3 per injector:
 - Dye concentration
 - Injection width
 - Injection duration



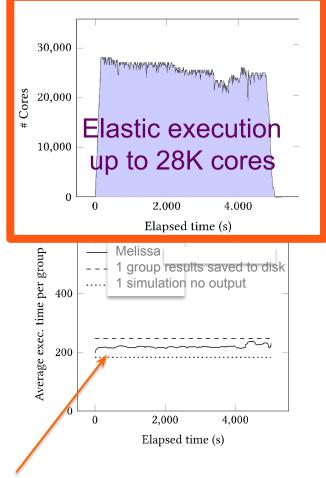
Ubiquitous Sobol' indices: 9x100X2=1800M indices (dye concentration)

8 simulations per group, 1000 groups, each one running on 512 cores

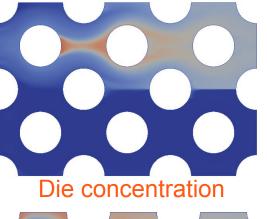
Generate 48TB of intermediate results

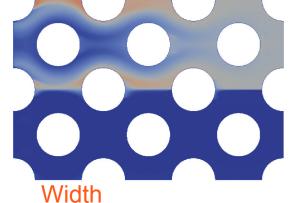
Server size: enough nodes to work in memory (491GB)

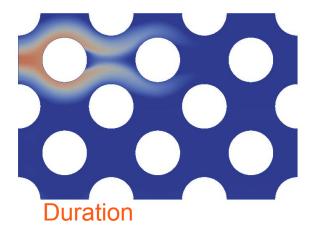
Curie Machine (80K cores)



Injector 1







Run 13% faster on average than when writing to disk

Supercomputing 2018

80 000 simulations

On-line processing of 288T

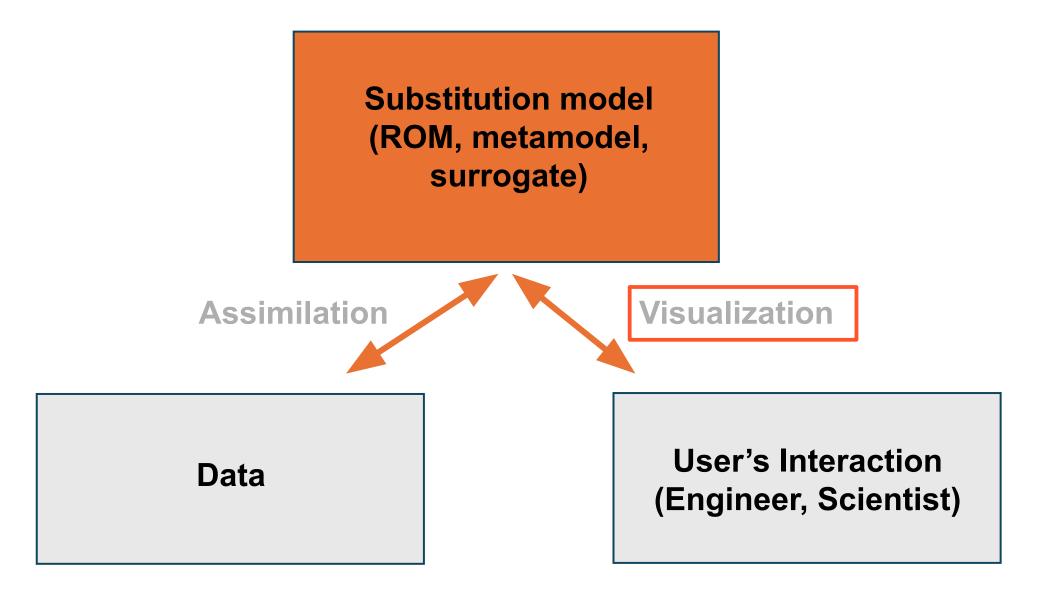
Sobol Indices

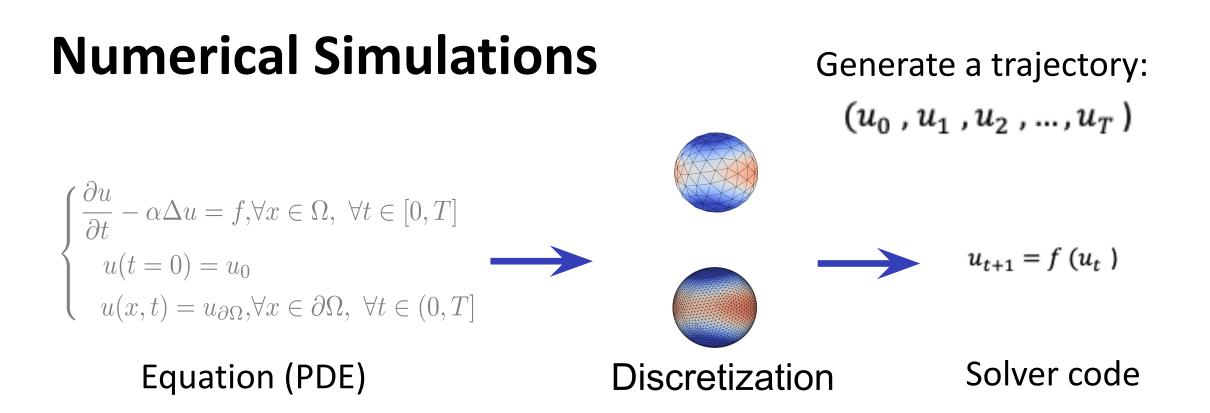
Quantiles

A. Ribes, T. Terraz, Y. Fournier, B. looss, and B. Raffin. Large Scale Computation of Quantiles using Melissa. In Proceedings of The International Conference for High Performance Computing, Networking, Storage, and Analysis, Dallas, Texas USA, November 2018 (SC'18).

Ínría

Surrogates and Digital Twins :





Scaling requires parallelized solvers to run on supercomputers.

The essence of HPC !

Deep Surrogates

Train a NN approximating the PDE solution.

Expected benefits: faster than traditional solver, less memory consuming

Two main approaches:

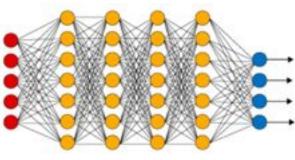
- No training data set required: PINNs
- Training data set required:

Neural Operators (FNO), GNN, Vision Transformer(ViT),

Use a classical solver to generate the training data set (synthetic data :-)

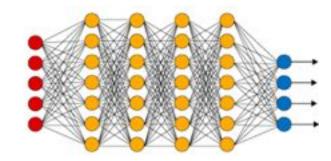
The NN can be:

- Autoregressive: $u_{t+1} = f_{\theta}(u_t)$ $u_t = f_{\theta}(x_0, t)$
- Direct:



Deep Surrogates

$$u_X^{t+1} = f_{\theta}(u_X^t)$$



Training from one trajectory: $(u_0, u_1, u_2, ..., u_T)$ Neural-GCM-arXiv:2311.07222 Training from multiple trajectories:

• Varying initial conditions

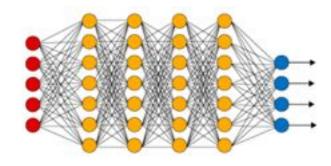
$$\begin{cases} \frac{\partial u}{\partial t} - \alpha \Delta u = f, \forall x \in \Omega, \ \forall t \in [0, T] \\ u(t = 0) = u_0 \\ u(x, t) = u_{\partial\Omega}, \forall x \in \partial\Omega, \ \forall t \in (0, T] \end{cases}$$

- Varying the discretization: GNS-arXiv:2002.09405
- Varying the PDE Fondation models for PDES
 - Poseidon- arXiv:2405.19101
 - PDE-Transformer -arXiv:2505.24717

Let's go back to the basics

Software Stack: Pytorch, Jax

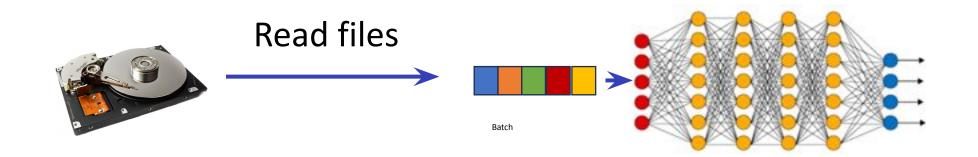
A dataset



A neural architecture

Compute resources (GPUs)

Offline Training



Repeat data through epochs if not enough available.

Multi-GPU Training

The gradient descent is performed once per batch and the associated parameter update is:

$$w_j^{t+1} = w_j^t + \alpha \sum_{i \in batch} \frac{\delta E}{\delta w_j} (x_i)$$

If we split the batch in tow parts:

 $batch = batch_{GPU1} \cup batch_{GPU2}$

We can rewrite the weight update:

$$w_{j}^{t+1} = w_{j}^{t} + \alpha \left(\sum_{i \in batch_{GPU1}} \frac{\delta E}{\delta w_{j}} \left(x_{i} \right) + \sum_{i \in batch_{GPU2}} \frac{\delta E}{\delta w_{j}} \left(x_{i} \right) \right)$$

We've got one way to parallelize training ! This is called **Distributed Data Parallelism (DDP)**

Distributed Data Parallelism

Algorithm with 2 GPUs:

- Duplicate the Neural Network on each GPU 1.
- Split the batch in two equal parts 2.
- 3. Each neural network processes its ½ batch and computes the associated gradients:

$$\sum_{i \in batch_{GPUk}} \frac{\delta E}{\delta \boldsymbol{w}_j} (\boldsymbol{x}_i)$$

- Exchange the results between GPUs (all-reduce op) 1.
- Each NN can updates its weights with the global gradient (same update on each 2. duplicate, so NN copies stay consistent):

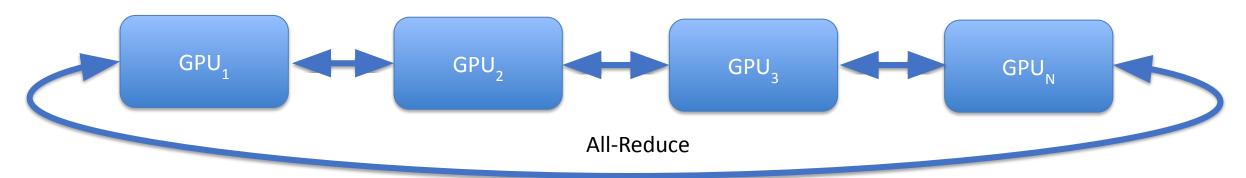
$$w_{j}^{t+1} = w_{j}^{t} + \alpha \left(\sum_{i \in batch_{GPU1}} \frac{\delta E}{\delta w_{j}} \left(x_{i} \right) + \sum_{i \in batch_{GPU2}} \frac{\delta E}{\delta w_{j}} \left(x_{i} \right) \right)$$

We can go almost twice faster!

$$batch = batch_{GPU1} \cup batch_{GPU2}$$

$$\sum_{i \text{ batcheput}} \frac{\delta E}{\delta \boldsymbol{w}_j} (x_i)$$

DDP: All-Reduce



Organizing the communications in a smart way, it's possible to get a cost that grows sub-linearly with the number of GPUs:

```
T(n) = 2\alpha \log(p) + 2 n/\beta (p-1)/p + \gamma . n . (p-1)/p
```

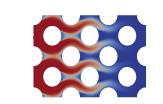
It's called an All-Reduce operation, available in standard collective communications libraries like MPI, Gloo, NCCL, RCCL.

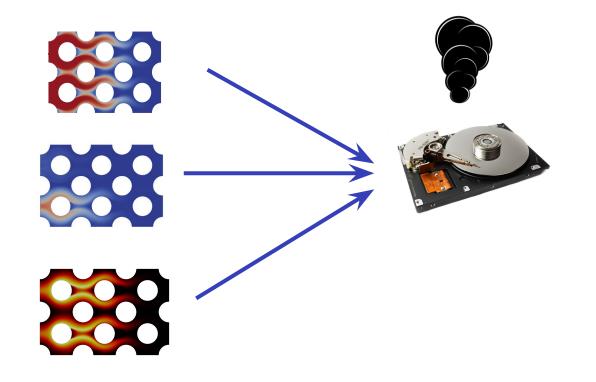
It's embedded in libraries like Pytorch, Jax and easy to deploy.

Beware that at high GPU counts you need to increase the size of the batch to keep them busy, which in turn, requires an adapted learning rate decay strategies.

Offline Training

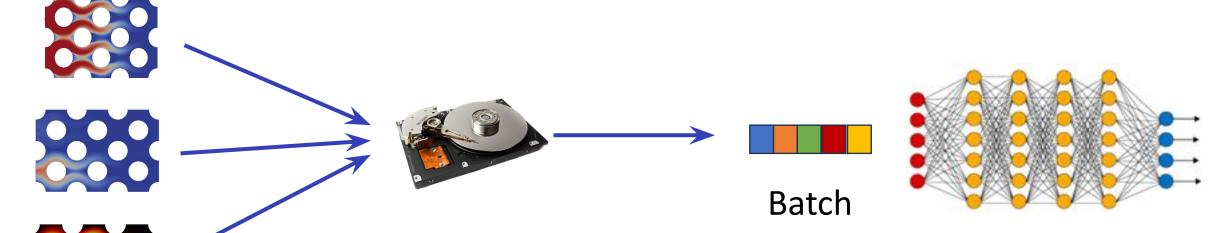
Run solver to generate a data set





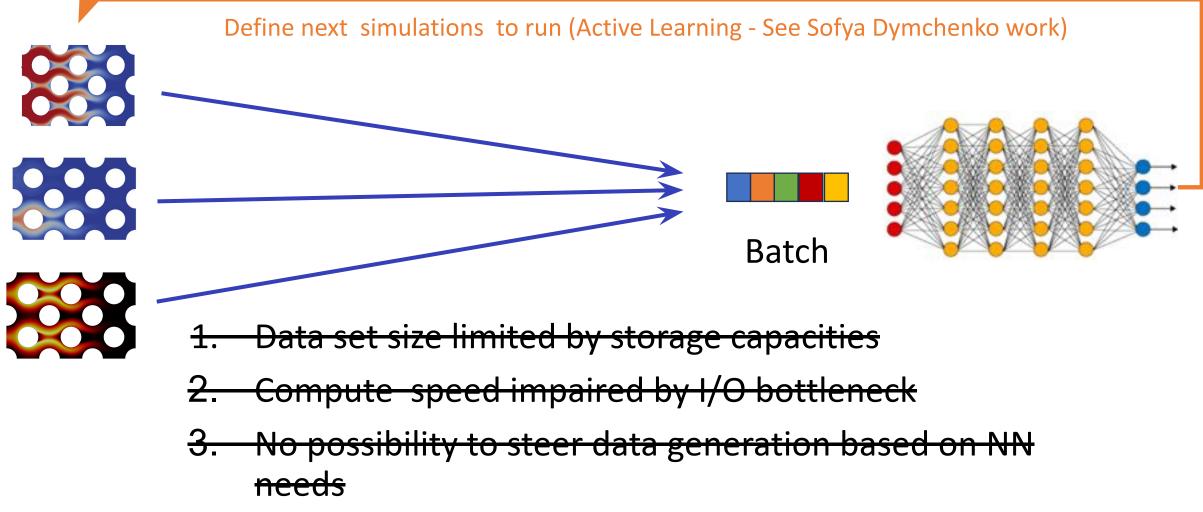
Multi-parametric: run ensemble of solver instances

Offline Training



- 1. Data set size limited by storage capacities
- 2. Compute speed impaired by I/O bottleneck
- 3. No possibility to steer data generation based on NN needs (active learning)

Online Training

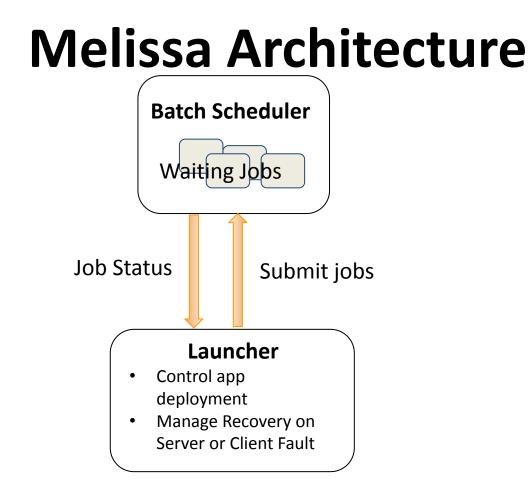


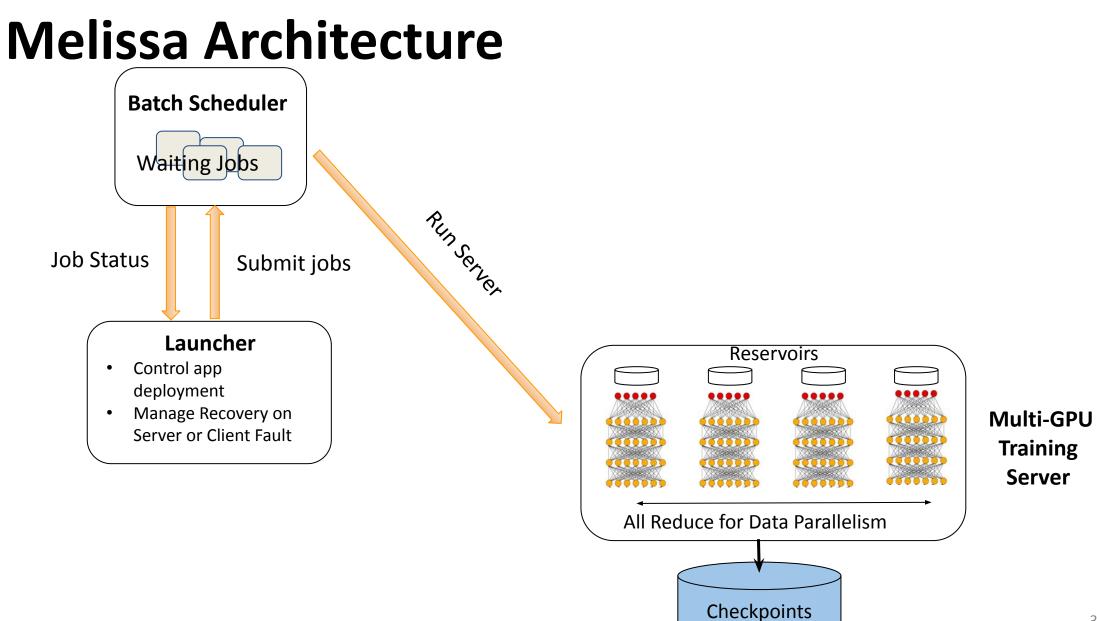
Melissa

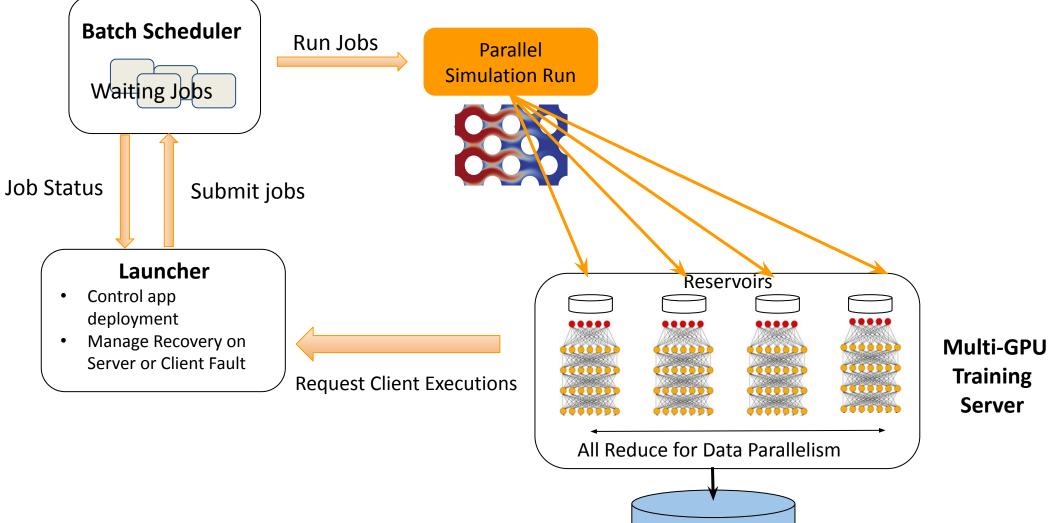
A HPC empowered framework for handling online training at large scale:

- Scalable (parallel simulation, parallel training, concurrent simulation executions)
- Elastic (number of concurrent running simulations can vary over time to adapt to compute resource availability)
- Fault-tolerant (automatic component restart in case of failure)

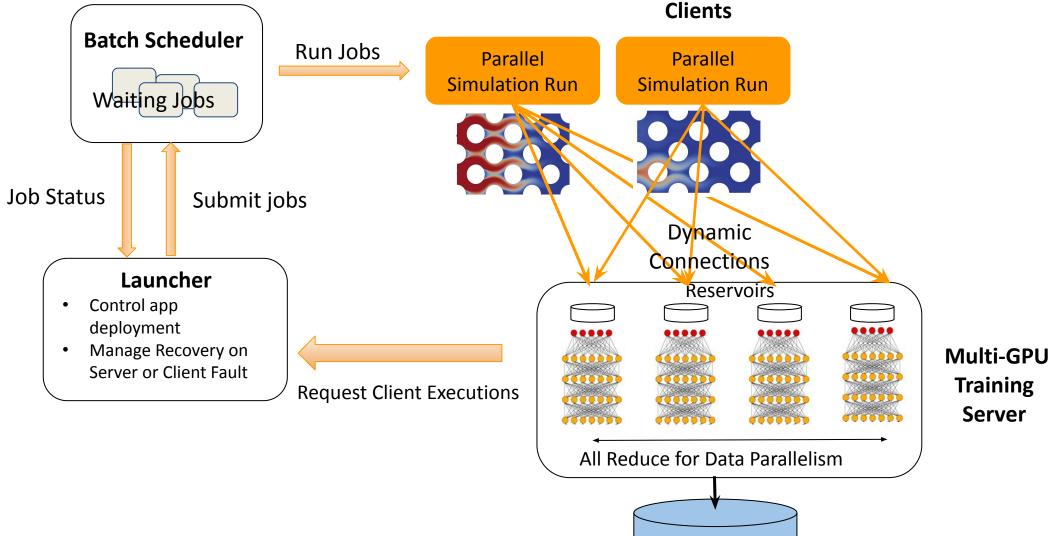
https://gitlab.inria.fr/melissa



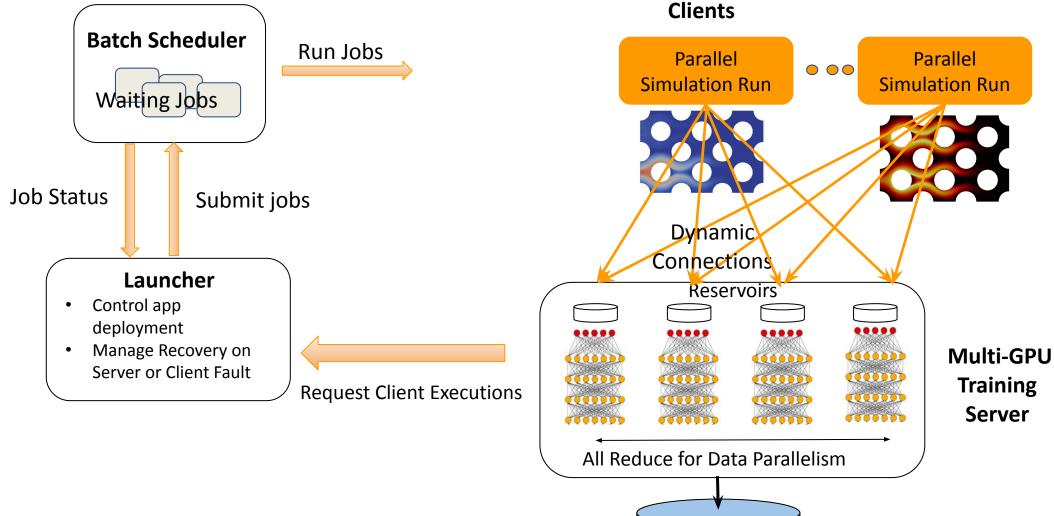




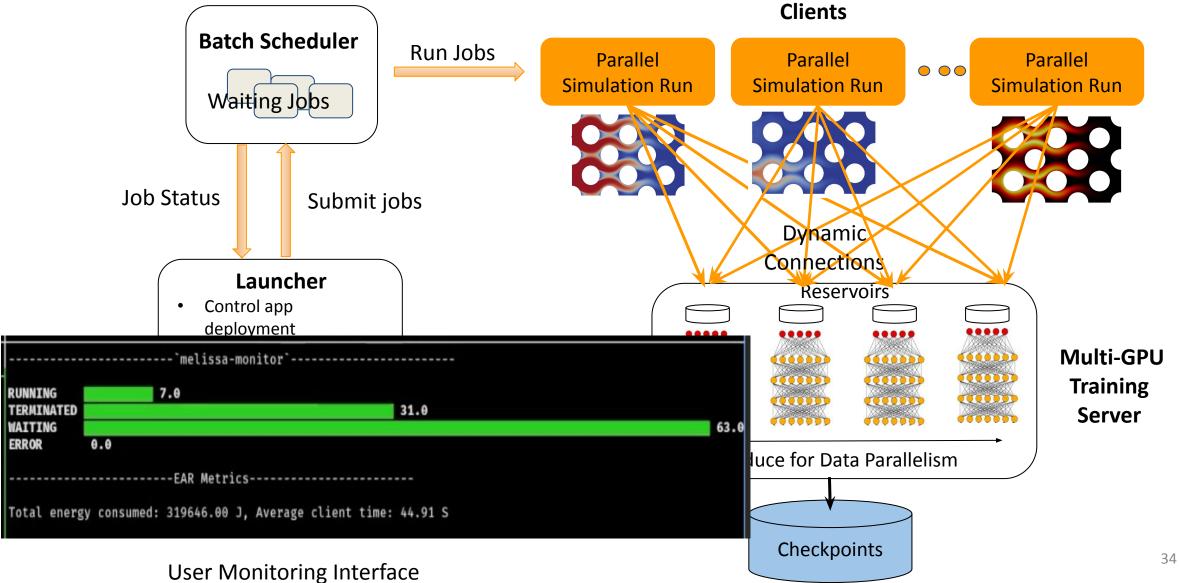
Checkpoints



Checkpoints



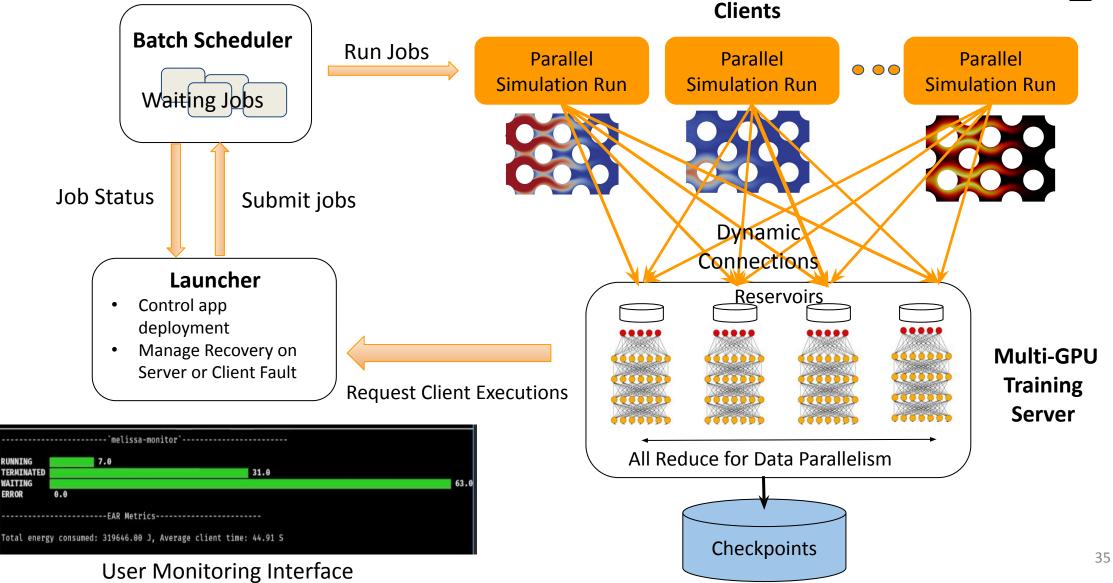
Checkpoints



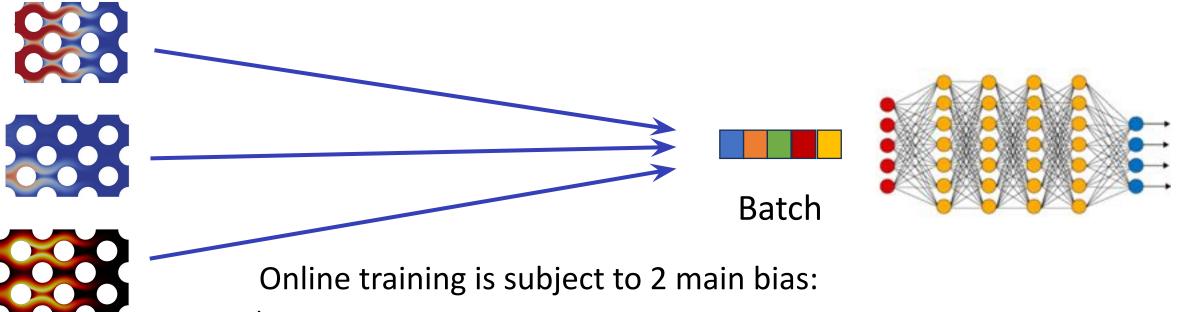
RUNNING

WAITING

ERROR



Online Training



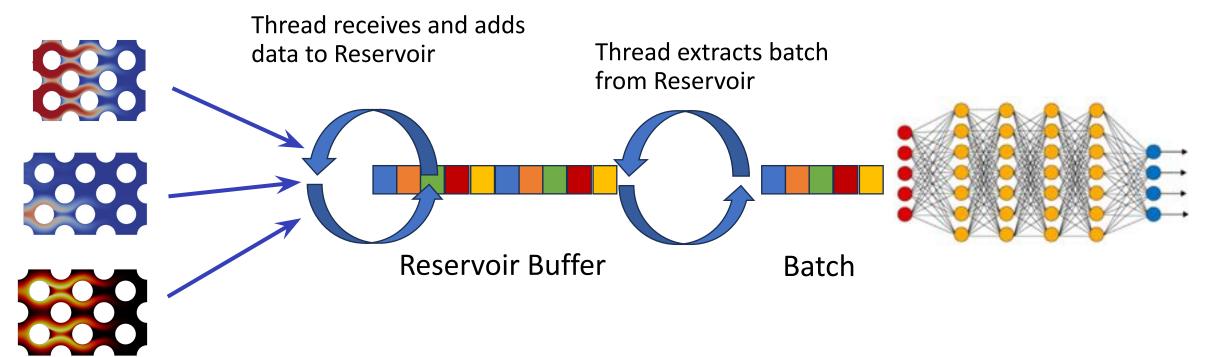
1. Intra-simulation bias:

Data are produced in time order $(t_0, t_1, t_2, ..., t_n)$

2. Inter-simulation bias:

The number of concurrent running simulations depends on compute resource availability

Mitigation Strategy: Reservoir Buffer

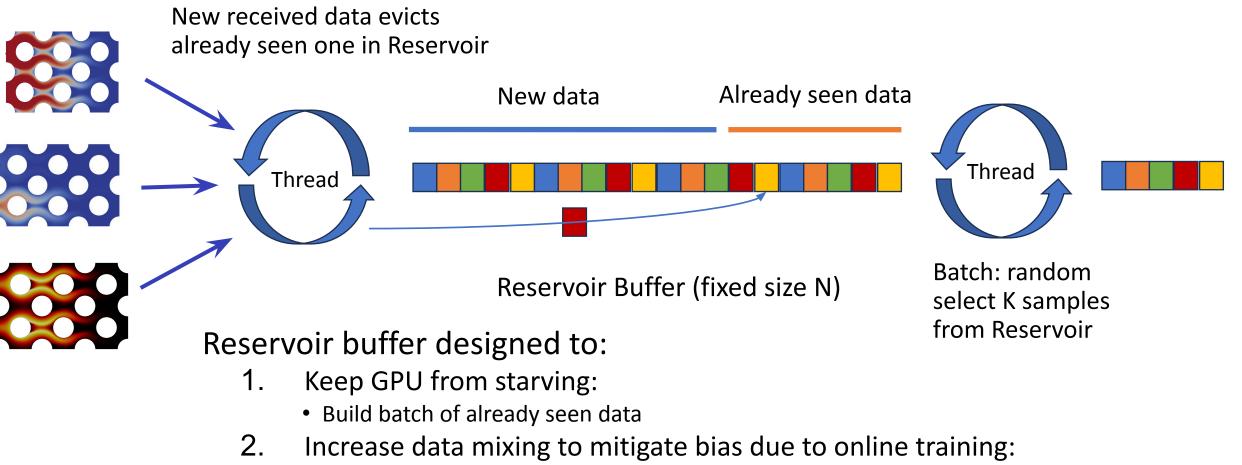


Reservoir buffer designed to:

- 1. Keep GPU from starving (potentially repeating data in batches)
- 2. Increase data mixing to mitigate bias due to online training

Reservoir Buffer

Expected sample residency time : N-1

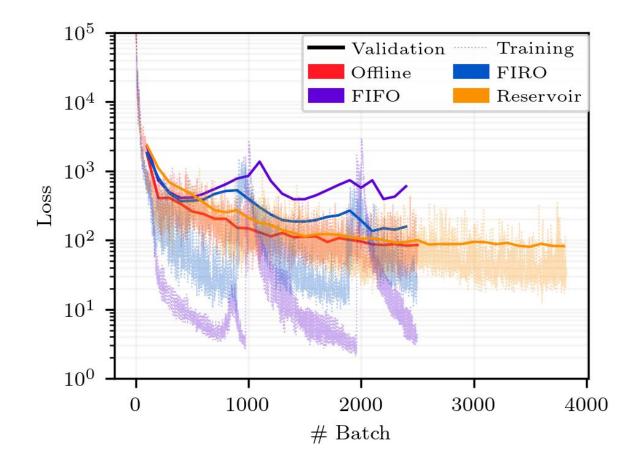


• Random selection in Reservoir (only once watermark reached)

Experiments: 2D Heat PDE

 T_{y_1} $\frac{\partial T}{\partial t} = \alpha \Delta T,$ 450 $T(x, y, 0) = T_{IC}$ - 400 $T(0, y, t) = T_{x_1}, T(L, y, t) = T_{x_2}$ -350 $T(x, 0, t) = T_{y_1}, T(x, L, t) = T_{y_2}$ T_{x_1} $T_{\rm IC}$ T_x » - 300 F **Input** (t, $T_{IC}, T_{x1}, T_{x2}, T_{y1}$, -250 T_{v2}) - 200 - 150 00000000000 T_{y_2} x6 parameters (5 temperatures + time) Temperature in [100,500]K 100 time steps, Cartesian grid 1000 x 1000 000000000 340M parameters Output 39

Bias Mitigation



250 simulations, 1 GPU for training, 50 nodes for data generation.

Learning rate updates at 1000 and 2000 batches

Offline training:

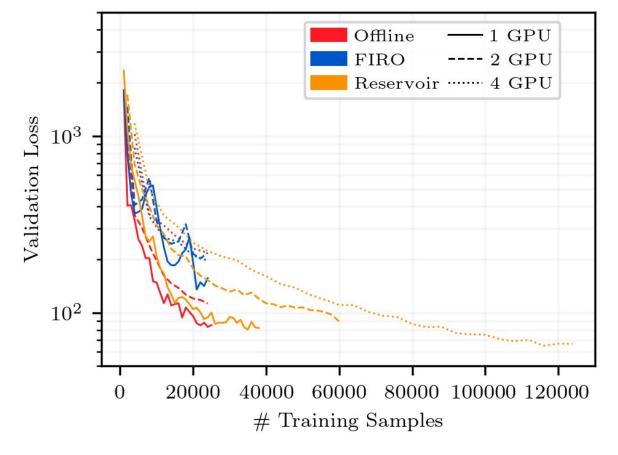
- Single epoch
- Reference MSE (no bias)

Online training:

- FIFO: First-in First-out Buffer
- FIRO: First-in Random-out Buffer
- Reservoir

Buffer	MSE	Time (<i>Hours</i>)
Offline	83.1	0.93
FIFO	391	0.081
FIRO	135	0.083
Reservoir	80.3	0.093

Multi GPU Training



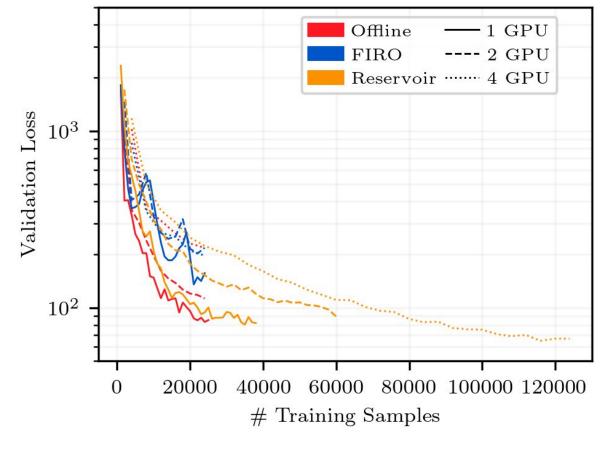
Learning rate halved every 10k sample

As before (250 simulations) but with 2&4 GPUs. Expected same MSE (same data):

- Offline & FIRO: lower validation as #GPU increases: larger batch size & less optimization steps
- Reservoir: Not enough data, so compensate with already seen data, training on almost 5x samples, leading to a better validation MSE (but not time gains)

Buffer	GPUs	MSE	Time (<i>Hours</i>)
Offline	1	83.1	0.93
Offline	4	218	0.10
FIRO	1	135	0.083
FIRO	4	197	0.082
Reservoir	1	80.3	0.093
Reservoir	4	65.0	0.095

Multi GPU Training



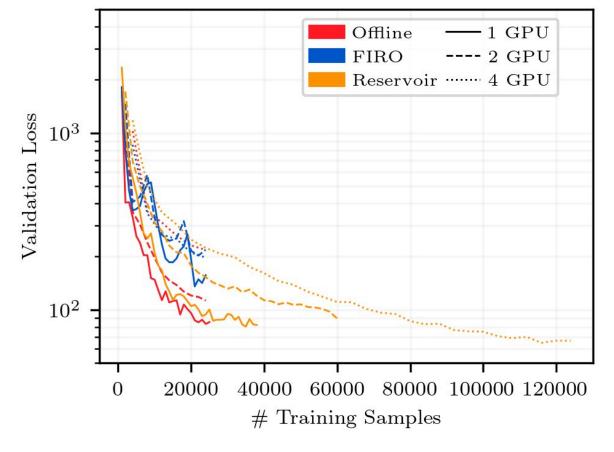
Learning rate halved every 10k sample

As before (250 simulations) but with 2&4 GPUs. Expected same MSE (same data):

- Offline & FIRO: lower validation as
 #GPU increases: larger batch size & less
 optimization steps
- **Reservoir:** Not enough data, so compensate with already seen data, training on almost 5x samples, leading to a better validation MSE (but no time

gain	s)		
Buffer	GPUs	MSE	Time (<i>Hours</i>)
Offline	1	83.1	0.93
Offline	4	218	0.10
FIRO	1	135	0.083
FIRO	4	197	0.082
Reservoir	1	80.3	0.093
Reservoir	4	65.0	0.095
			42

Multi GPU Training



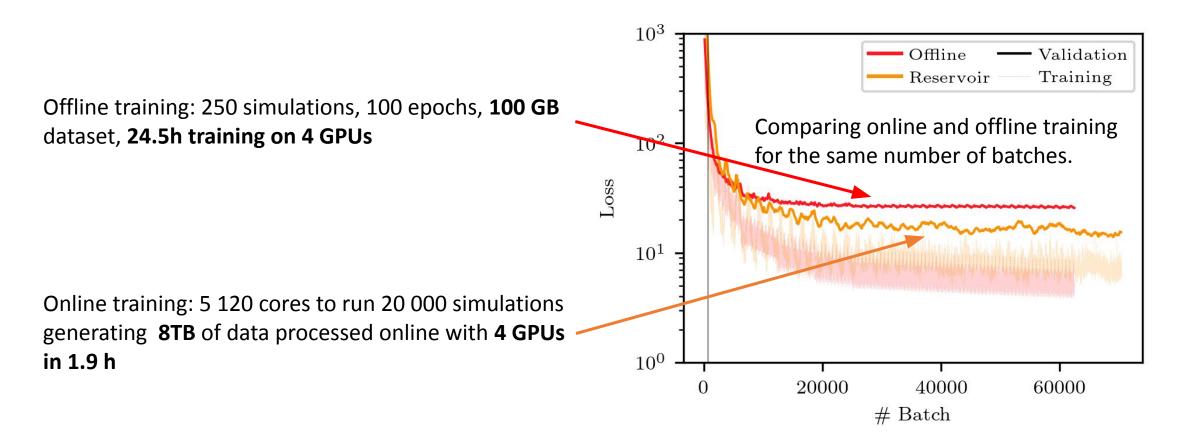
Learning rate halved every 10k sample

As before (250 simulations) but with 2&4 GPUs. Expected same MSE (same data):

- Offline & FIRO: lower validation as
 #GPU increases: larger batch size & less
 optimization steps
- Reservoir: Not enough data, so compensate with already seen data, training on almost 5x samples, leading to a better validation MSE (but not time gains)

gain	15)		
Buffer	GPUs	MSE	Ti ne (Houns)
Offline	1	83.1	0.93
Offline	4	218	0.10
FIRO	1	135	0.083
FIRO	4	197	0.082
Reservoir	1	80.3	0.093
Reservoir	4	65.0	0.095

Unleashing Online Training



Training online is 12x faster, and validation MSE 47% lower.

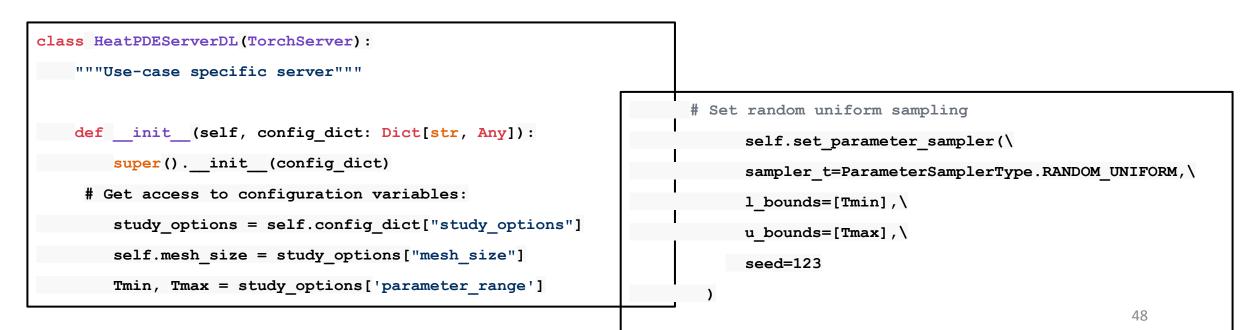
Cost		Training Setting	Dataset Size (GB)	Time (<i>Hour</i> S)	Cost (€)
Resource	Cost (€)	Offline with	100	24.5	51.60
CPU (<i>kh/core</i>)	6.36	data generation			
GPU (<i>kh/GPU</i>)	382	Offline	100	24.3	43.33
SSD Storage (TB)	59.4	without data generation			
Source GENCI		Online	8,000	1.97	63.8
		Hypothetic offline	8,000	24.3	512
					4 -

Cost			Training Setting	Dataset Size (<i>GB</i>)	Time (<i>Hour</i> s)	Cost <i>(€)</i>
Resource	Cost (€)		Offline with data generation	100	24.5	51.60
CPU (<i>kh/core</i>)	6.36					
GPU (<i>kh/GPU</i>)	382		Offline without data generation	100	24.3	43.33
SSD Storage (<i>TB</i>)	59.4					
Source GENCI			Online	8,000	1.97	63.8
			Hypothetic offline	8,000	24.3	512

Cost		Training Setting	Dataset Size (<i>GB</i>)	Time (<i>Hour</i> s)	Cost <i>(€)</i>
Resource	Cost (€)	Offline with	100	24.5	51.60
CPU (kh/core)	6.36	data generation			
GPU (<i>kh/GPU</i>)	382	Offline	100	24.3	43.33
SSD Storage (TB)	59.4	without data generation	A		
Source GENCI		Online	8,000	1.97	63.8
		Hypothetic offline	8,000	24H at least	512

- 1. Instrument the simulation code
 - 3 functions API: melissa_init, melissa_send, melissa_finalize
 - Supports: Fortran, C/C++ and Python
- 2. Inherit a base server class and customize to your needs:

Set the sampler for the simulation parameters:



Data transformation from reservoir to batch:

```
@override
 def process_simulation_data(self, msg: SimulationData, config_dict: dict):
     field = "temperature"
     # cast msg.data to float32
     x = torch.from_numpy(
         np.array(msg.parameters[-self.nb_parameters:] + [msg.time_step], dtype=np.float32)
     )
     y = torch.from_numpy(msg.data[field].astype(np.float32))
     return x, y
```

3. Adapt the configuration to your need (here set up config for using Slurm):

```
"launcher_config": {
  "scheduler": "slurm-semiglobal",
    "scheduler_arg_server": [
    "--qos=qos_gpu-dev",
    "--account=igf@v100",
    "--nodes=1".
    "--ntasks=2".
    "--gres=gpu:2",
    "--cpus-per-task=5",
    "--threads-per-core=1",
    "--time=01:00:00"
  "scheduler_arg_client": [
    "--ntasks=1"
     . . . .
  . . . .
```

4. Start everything:

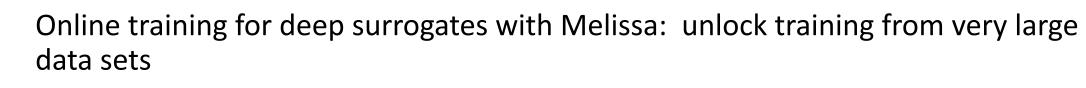
melissa-launcher --config name my config

Custom data management (usually at Reservoir side), may be needed depending on your training scheme for autoregressive models

$$u_X^{t+1} = f_{\theta}(u_X^t)$$

52

linktr.ee/melissa.inria



- Gains on generalization, training time, GPU usage

Very soon: support for APE-Benchmark suite (arXiv:2411.00180)

Conclusion

Project: support of SBI (Simulation Based Inference) <u>https://sbi-dev.github.io/sbi/latest/</u>

