Basis-specific Neural Operators
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« Fourier Neural Operator [2]

« Wavelet Neural Operator [3]
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[1] Kovachki, N. et al. (2021). Neural operator: Learning maps between function spaces.
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Integral Kernel — Green’s Functions

Considering the generic family of PDEs of the following form: §(z — 0.00) G(z, 0.00)
(Lou)(z) = f(z), z€D (1)
u(x) =0, r € 0D

where L, is a differential operator depending on a parameter ¢

When the input is the delta measure centered at x, namely,
f(x) = 6,, the unique solution of Eq. (1) is defined as the ¢ x 1 0 x 1
Green’s function G,, that is,

L(z)u(z) = f(z < 0.00) w(z) = f“'[mf(;l:l) G(z, ") dz'
L.Glz,") = 6, 2)

0

Since the source term f(x) in Eq. (1) is a sum of delta
functions, the solution of Eq. (1) can be represented as Eq.
(3) by applying the superposition principle:

u(z) = /D Gol,y) F(y) dy 3 0 o 1

Building the solution for a general source based on
Green’s function [1]
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Neural Operators

u(x) = f Go(x, y)f(y)dy (3)
D
Guided by Eq. (3), the following iterative architecture is proposed [2]:

V(X)) =0 (th(x) + j K¢(x —y)v, (Y)dY> (4)

where o is the activation function, the matrix W and the kernel Ky are modeled as neural networks,
which are learned from data. ﬂ

« Monte Carlo approximation * Expensive cost A
« Convolution theorem « Multiplication in the other domain
_ J

|
DEEP Ero]
LEARNING

2] Li, Z. et al. (2020). Neural operator: Graph kernel network for partial differential equations. arXiv preprint arXiv:2003.0348& st | g "™




Convolution Theorem

« Laplace Neural Operator [3]\

L(ky)L(W) Ves1(x) = a(Wve(x) + L71(L(kp)L(V)))

Fourier transform » Fourier Neural Operator [4]

f Kp(x —y)v(y)dy < , Fky)F (@) V1 (%) = o(Woe(x) + FL(F (k) F()))
P Inverse Fourier transform

« Wavelet Neural Operator [5]
W(ky)W () Ve41(0) = a(Wvp(x) + W (W(kp)W(v)) )

[3] Cao, Q., Goswami, S., & Karniadakis, G. E. (2023). LNO: Laplace neural operator for solving differential equations.

[4] Li, Z. et al. (2020). Fourier neural operator for parametric partial differential equations. ogep
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T [5] Tripura, T. and Chakraborty, S. (2022). Wavelet neural operator: a neural operator for parametric partial differential equations. nvoia. - isiure | &5 00




Fourier Transform

Ao

5 + Z Ay cos(kx) + By sin(kz),

k=1

flz) =

The Fourier transform pair for a function f(x) is defined as
f(k) = / f(z)e *dz,
fla) = FFR) = / Fikeitd

where k could be frequency or wavenumber in time or space domain.




Fourier Transform

Fourier transform of a partial derivative is defined as

8f _ > a_f —ikx
]:(833) =/ 9z dx

Performing integration by parts, yields
af —1kx] > 7. —ikx
f(%) = [f(ac)e & }_OO —/ f(x)(—ike ") dx

Fourier transforms are applicable to periodic functions, and thus by cosntruction it requires f(—o0) =

f(o0) =0.

Therefore,

F (g) — zkf f(x)(e " dx = ik f(k)
Ox oo
Now, taking the inverse Fourier transform on both sides:

g_i = ikF U (F(f ()
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Relation between Laplace transform and Fourier transform

0.0

g -0.5
o
£ 10
. E
L[f(t)] — j f(t)e_Stdt (5) 3 -15
0
s=1+iw o - : ’ h
A - Real Axes
(0.0] iw - Imaginary Axes
LIf(®)] ZJ f(t)e Me i@tde (6) Ve
0 T

Laplace transform of f(t) is the Fourier transform of f (t)e 7t o
Letting A = 0, Laplace transform becomes Fourier transform |

(b) A—Realees";%\'\\l - -

0.0

Visualization of transform functions: (a) 2D plot; (b) 3D plot
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Relation between LNO and FNO

LNO

6 — [ Rox = »vGddy

0
‘ Laplace transform
Ui(s) = Kg(s)V (s)

N 0
Ui(s) = (Z S fn‘un> ({)Zoo S _afw{))

‘ Residue theorem

S o i LA

S — S—iw
n=1 Hn f=—00 ¢

™ 7 o

(0.0)

(8) w0 = [ kgl = w0y
0

l Fourier transform

(9) Uy(w) = Kg(w)a(w)
Inverse Discrete
Fourier transform

u (x) = z U(w,) eteex
(10) f=—o0

—
L ~—ao
~
~q
~

(12)

(13)

(14)

oo T uq (x) =€ z a{)ch(we) eiw{’\’f
ul(X) = Z ,BnV(,un)e“nx +(\Z agK(p(iw{))e"“’{’," (11) K om0,
= P SO gy /

Transient response

Steady-state response



Relation between Wavelet transform and Fourier transform (WNO and FNO)

/ Wavelet transform \
xX—>b

W(a,b) =j v(x)%tP( )dx
D

when one considers the complex exponential Y(x) = e~'@o*
then :

W(a, b) j () = e~ T g
a,b) = v(x)—e a dx
L PR

Performing 7 = ﬂ, then: . . .
a Since the short-time Fourier transform

W(a,b) = \/af v(at + b)e~i®oT gt can be derived from wavelet transform,
' D the FNO may be regarded as a special

when a =1, and use window function w(t), the above case of WNO [5].
equation becomes short-time Fourier transform. /

[5] Tripura, T. and Chakraborty, S. (2022). Wavelet neural operator: a neural operator for parametric partial differential equations.

[6] Bruns, A. (2004). Fourier-, Hilbert-and wavelet-based signal analysis: are they really different approaches. Journal of Neuroscience Methods, 137(2), 321-332.



P |I Iterative Kernel Integration : 0
@—> v(x) € R% —pp| =P u(x) € R%
I u(x) =o (Wv(x) + f K (x — y)v(y)dy) I
\ ? )

» Lifting input f(x) to a higher dimensional representation v(x) by a linear transformation P
> Laplace layer/ Fourier layer/Wavelet layer

» Projecting u(x) back to the original dimension Q
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—_——t —t . Fourier layer
AN
\ W

Schematic representation of Fourier layer (adopted from Ref. [4])

Procedure:

> Initialize training parameters 6 = (K4 (iwy), -+, K4(iw,)) in the frequency domain
» Obtain a(w) by performing FFT of input

» Perform the multiplication U; (w) = K¢ (w)a(w)

»> Perform IFFT of U, (w) to obtain the output of Fourier layer

oLl ;.1 et al. (2020). Fourier neural operator for parametric partial differential equations.
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Wavelet Iayer\

Schematic representation of wavelet layer (adopted from Ref. [5])

Procedure:

> Initialize training parameters @ = (W(ky1), -, W(kgy) ) in the wavelet domain
» Obtain W (v) by performing wavelet transform of input

» Perform the multiplication W (u;) = W(ky)W (v)

» Perform inverse wavelet transform of W (u) to obtain the output of wavelet layer

4 = DEEP &
S&Tripura, T. and Chakraborty, S. (2022). Wavelet neural operator: a neural operator for parametric partial differential equations. r:v%A. Nerute | g PROWN
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______________

______________

S

Steady part

I' 1
O —— [V(m) x ust(t)—r o ]:

E[V(s) % uw(t)—b o J

__________________________________

Schematic representation of Laplace layer (adopted from Ref. [3])
Procedure:

» Initialize training parameters 6 = (uq, -+, un, B1, -+, By, ), Where u,, and g,, are trainable system
poles and residues

» Obtain input poles iw, and residues a, by performing signal decomposition methods of
input, such as FFT, Prony-SS

» Calculate output residues Yné and 4,

> Compute output by u(x) = Z . eHn¥ 4 z PR

f=—o00

i L DEEP &
438Gap, Q., Goswami, S., & Karniadakis, G. E. (2023). LNO: Laplace neural operator for solving differential equations. . nvioia ettt | oMY




o —

] W part !
P, vy (x) “E @—> o !
C steadypat |
P I Y1
V(X) = | [V(m) p ¢ ust(t)—> o |
P, oo Transient part _ _
: R « When transient part is zero, the
v3(X) = [ (V(s) x utr(t)—-b o :
: ) advanced LNO becomes FNO.
Bt ’ » Three parts can have different lifting
Schematic representation of advanced Laplace layer dimensions
Procedure:

Initialize training parameters 6 = (ul,---,uN,ﬁl,---,ﬁN, K¢(iw1),---,K¢(iw1))

Obtain input poles iw, and residues a, by performing FFT of input
Perform the multiplication U(w) = Kg(w)a(w)
Compute steady-state output ug.(x) by IFFT

Calculate output residues v,

vV V V V V 'V

Compute transient output by ug(x) = z Ynetn*
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Fourier Neural Operator (FNO) for Parametric Partial Differential Equations

fv(a:)7 P —— Fourier layer 1

Features _-

Fourier layer 2

Fourier layer L

— Q — u(®)

Idea: The main network parameters are defined and learned in the Fourier space rather than the physical space.

CRUNCH

» LiZ, Kovachki N, Azizzadenesheli K, Liu B, Bhattacharya K, Stuart A, Anandkumar A. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895. 2020 Oct 18.
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Structure of FNO

Step 1: Function value v(x) is lifted to a higher dimensional representation zy(x) by
zo(z) = P(v(x)) € R%

Transformation P : R — R% is a shallow fully-connected NN or simply a linear layer. d, is
like the channel size in CNN.

Step 2: L Fourier layers are applied iteratively to zg. zp is the output of the last Fourier layer, and
the dimension of zy,(x) is d..

Step 3: Transformation @Q : R% — R is applied to project zr,(z) to the output by

u(z) = Q(zr(x))

() is parameterized by a fully-connected NN.

v = LiZ, Kovachki N, Azizzadenesheli K, Liu B, Bhattacharya K, Stuart A, Anandkumar A. Fourier neural operator for parametric partial differential, &
- 16  €quations. arXiv preprint arXiv:2010.08895. 2020 Oct 18. e, | esRNING BROWHN



Fourier Layer using Fast Fourier Transform (FFT)

Fourier layer

For the output of the {th Fourier layer z; with d, channels:

Step 1: Compute the transform by FFT F and inverse FFT F—1:

F YR -F(z))

F is applied to each channel of z; separately: Truncate the higher modes of F(z;), keeping only the first k

Fourier modes in each channel.|So F(z;) has the shape d, x k.

Step 2: Apply a different (complex-number) weight matrix of shape d, x d, for each mode index of F(z;) Have k

trainable matrices, which form a weight tensor R; € C%»*dvxk,

R; - F(z1) has the same shape of d, x k as F(z;).

Step 3: Inverse FFT Need tolappend zeros to R; - F(z;) to fill in the truncated modeﬂ

Moreover, in each Fourier layer, a residual connection with a weight matrix W; € R% >4 The output of the

(I + 1)th Fourier layer 241 is[zi41 =0 (F T (B - F (z1)) + W,

©Z] +bl)
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Implementation of Fourier Neural Operator (FNO)

1. Consider the Burger’s equation given by

ou 0 [ u? 0w
E+%(7)_y@, re(0,1), te (1]

and v = 0.1 with initial condition (IC) u(x,0) = ug(z) and periodic boundary condition.
2. We aim to learn the operator mapping the initial condition to the solution at time one uy — u(-, 1)

3. The data is generated for different initial condition uy ~ N(0,625(—A + 25I)~2)

v(x) P — Fourier layer 1 Fourier layer 2 f——+ « « — Fourier layer L — Q — u(z)
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Dynamical Systems & PDEs : Relative £, errors of several examples

10° C | T I T T T I | ]
: Tk
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Duffing Duffing Pendulum Pendulum Lorenz Lorenz Beam Diffusion Reaction- Brusselator
(c=0) (c=05) (c=0) (c=05 (p=5) (p=10) Diffusion

Relative £, error in the test cases for all the ODE and PDE cases and for different
scenarios considered in each example. The plot shows the mean and the standard

deviation of the error that has been computed based on five independent training trials.



Differences between DeepONet and FNO

Properties DeepONet FNO
Input domain D & Output domain D’ | Arbitrary Cuboid, D = D’
Discretization of output function u No Yes
Mesh Arbitrary Grid
Prediction location Arbitrary Grid points
Full field observation data No Yes
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A Comprehensive and Fair Comparison of Two Operator-Regression Networks (with practical extensions)
based on FAIR Data

DeepOnet@Brown vs.

Problems

Burgers’ equation

5 Darcy problems in a rectangular domain and complex geometries
Multiphysics electroconvection problem

Earthquake problem

3 Advection problems

Linear instability waves in high-speed boundary layers
Compressible Euler equation with non-equilibrium chemistry
Predicting surface vorticity of a flapping airfoil

Navier-Stokes equation in the vorticity-velocity form

2 problems of regularized cavity flows

= Lul, MengX, Cai S, Mao Z, Goswami S, Zhang Z, Karniadakis GE. A comprehensive and fair comparison of two neural
operators (with practical extensions) based on FAIR data. arXiv preprint arXiv:2111.05512. 2021 Nov 10.
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dFNO+: Operators with inputs/outputs defined on different domains

FNO limitation: input function domain D and output function domain D’ is the same.

Case I: The output space is a product space of the input space and another space Do, i.e., D' = D x Do

1.5

Example: PDE solution operator mapping from IC to the solution in the whole domain |

0.5

G:v(x) =u(z,0)— u(x,t) > (J/V\
-0.5

where x € [0,1] and t € [0,T]. Here, D = [0,1], D" = [0,1] x [0,T], and thus Dy = [0, 7. 1

— Method 1: Extend the input domain by adding the extra coordinate ¢, defining v as t

{)(Zﬂ,t) = ’U(.CC) 150 0.5

Then, FNO is used to learn the mapping from o(z,t) to u(z,t). 100

— Method 2: Shrink the ouput domain via RNN for time marching. Hard to train and | 50- 02
unstable. 0.1
0 3
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dFNO+: Operators with inputs/outputs defined on different domains

Case II: The input space is a subset of the output space, i.e., D C D’. in general we can extend v from

D to D’ by padding zeros in the domain D'\ D.

Example when padding is not efficient:

Consider a PDE defined on a rectangular domain (x,y) € D’ = [0,1]?, and the opera-
tor is the mapping from the Dirichlet boundary condition v defined in the four boundaries
(D =1{0,1} x [0,1] U [0,1] x {0,1}) to the solution u(x,y) inside the rectangular domain.

Better strategy: First unfold the curve of v into a 1D function ¥ defined in [0, 4] :

(v(Z,0), if x € [0,1] (bottom boundary)
5(F) = < v(l,z —1), ifxe ;1,22 (right boundary)

v(3—1z,1), ifx € [2,3] (top boundary)

\v(0,4—27), if € [3,4] (left boundary)

Then use the method in Case I to learn the operator from v in 1D to u in 2D.
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gFNO+ for Operators with inputs/outputs defined on a complex
geometry

FNO uses FFT, which requires the input and output functions to be defined on a Cartesian domain
with a lattice grid mesh. Two issues:

.

. . . . . 0.8
(1) non-Cartesian domain. Solution: “nearest neighbor” extension

06 0
(2) non-lattice mesh. Solution: interpolation to a lattice grid mesh Y C( ﬁfs
Nearest Neighbor extension: i 5 15

~ 0 02 04 06 0.8 1
Define the Cartesian domain D, which is the minimum bounding box of D

3 v(xz), ifxeD
() = toel
vo(x), ifxe D\D 05

1

The choice of vg(z) is not unique, such as vg(z) = 0, i.e., zero padding.
Recommend: nearest neighbor so that ¥(z) is continuous on the boundary of D. : == :
for x € D\D, wvo(x)=wv(xp), where zy=minyep |p— 2|,

CRUNCH

TIVIE
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DeepONet and FNO with feature expansion

Features of the system: prior knowledge about the underlying system. For example, the prior knowl-
edge of output functions being oscillating in nature or the functions being fast decaying.

For better approximation: encode the knowledge by modifying the network architecture.

DeepONet: Feature expansion either in the trunk net or in the branch net.
e Feature expansion in the trunk net: If features are functions of &

e For example, harmonic feature expansion
§ — (€, cos(§),sin(§), cos(2€), sin(2€), . . .)

e Feature expansion in the branch net: If the feature is a function of x
FNO: Features are applied by using them as extra network inputs

e @ For example, the coordinates x and feature f(z), then the FNO input is

TIME
ey

(z,v(x), f(x)) € R

LEARNING @2 BROWN
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DeepOnet provides a plurality of Neural Operators

Branch Input v(n)

Features

z . :
% N =

: < i
—

W we

., Iaia2iastg
wery” @
\
@ |
~ |
~
s

3 ®
8] T2

1-D feature 2-D feature Hierarchical

graph data

Trunk Input &

Co-
ordinates

Spikes

Vertices/Edge
S

LIF neuron
AFH_

—_

Branch Net

e

Trunk Net

“ows I owe [ s

Basis Coefficients
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DeeOnet with Kolimogorov Arnold Network (KAN) on the trunk:
DeepOKAN

DeeIOONet KAN refs: github.com/KindXiaoming/pykan
Shukla et al., arXiv:2406.02917

9w |
[3,16,24,32] trunk net @{%@Xg % . l

DeepONet+KAN
9\‘.« o
[416,200,100,100,32] branch net =’ @%ﬁ -
/A\

é—» Go(A)(x,t)
33232320 SN
Chebyshciv polynomi]al order 7 trunk net - %


https://github.com/KindXiaoming/pykan

Thermal Reactor Data

43 cases, each case has temperature data at 16 nodes in time domain [0, 2500s]

PROBLEM STATEMENT - PRESSURE VESSEL
Staggered Heat transfer — Stress Analysis (cont'd)

ki
]
||
|
)
L)
a

+ Stress Analysis Nodes (0)]
interest

- Reads temperature distribution from heat transfer
analysis

- Fixed time dependent internal pressure on the
inside of the vessel (highlighted)

* These amplitudes ARE NOT used as input features

Temperature

- Contact interaction between parts

- Bolt preload

- Initial steady state

- Transient (step of interest - training prediction)

* Outputs

- Asubset of nodes (ideally, the entire field)
- Nodal temperature
- S11 (ideally Sij)

DS SIS



DeepONet setup

find a mapping from amplitude( A(x,?) ) to stress ( S11(x,?) )
Data: 43 cases; 34 for training; 9 for testing (randomly selected)

X— (x,2), node coordinates ¢—time

Trunk net:

Amplitude

25

o 0.5 1 1.5 2 ¥
time «10*

Branch net: A, Output:  st1(x
A(x,f) and S11(x,?) are uniformly interpolated into 26 points in time domain [0, 25000s]

A(x,?) is rescaled by 1/508
S11(x,?) is rescaled by 8000



Comparison between MLP and KAN on S11 stress

DeepOnet
test error: 6.63%

DeepOnet+KAN
Test error: 2.60%




Model Architectures: DeepONet + Time Model
DeepO-Mamba

(A) DeepONet Structure (B) DeepONet + Time Model Structure

Branch Net Trunk Net

i
Time Model | 1! O
.

.........................

» The encoder + Mamba part can be regarded as the branch
net, while the decoder can be regarded as the trunk net in
the DeepONet framework.



State Space Model (SSM) and Mamba

SSM is a sequence-to-sequence (seg2seq) mapping:

x'(t) = Ax(t) + Bu(t). (1)
y(t) = Cx(1). (2)

It maps the input sequence u(t) to the output sequence y(t) via
the hidden state x(t).

Modern SSM like Mamba is based on the above simple equation,
and improves the model via input-dependent A, B, C
parameterization, ML system design, and implementation
consideration (group norm, skip connection, etc.).

The entire SSM is constructed by stacking multiple SSM blocks,
where the SSM dynamical system mapping is combined with
nonlinearity and another module, such as feedforward and
convolution networks.




DeepO-Mamba: BELTRAMI FLOW

Type Model Params Time Memory Relative Lo Error

DeepO-GRU 460,672 11 min 15239MiB 1.708E-01+1.539E-02

DeepO-LSTM 592,256 11 min 15193MIB 1.188E-01+2.054E-02

DeepO-Mamba 504,704 6 min 15023MIB 8./61E-04+3.956E-04
DeepONets DeepO-Otormer-V 1,313,152 6 min 15151MIB Diverge
DeepO-Otormer-G 1,312,640 6 min 15149MI1B Diverge
DeepO-Oformer-F 1,312,640 6 min 15149MIB Diverge

DeepO- [ranstormer 462,208 7 min 15099M 1B 2.297E-02+3.197E-03
DeepO-GNOT 2,824,578 12 min 15257MIB Diverge

FNO4d 11,944,427 111 min 51107MiB 1.499E-02+1.581E-03

FFNO4d 181,155 901 min 71793MIB 1.382E-02+1.205E-03

FNO3d+GRU v1 749,891 262 min 64215MIB 3.328E-02+3.455E-03

ENOs FNO3d+GRU v2 749,891 263 min 64215MIB 3.766E-02+4.022E-03

FNO3d+LSTM v1 750,435 202 min 61811MIB 3.038E-02+3.290E-03

FNO3d+LSTM v2 750,435 203 min 61811MIB 3.626E-02+4.785E-03

FNO3d+Mamba v1 757,859 576 min 77773MIB 2.196E-02+2.470E-03

FNO3d+Mamba v2 757,859 577 min 77773MIB 2.034E-02+1.892E-03

» Our latent approach cleverly encodes the high-dimensional PDE solutions discretized on the 173
3D dense spatial grid to very low-dimensional vectors, facilitating SSMs to learn the temporal

dynamics.

» In contrast, FNO requires inputting the entire huge 3D tensor corresponding to the discretized 3D
grid, incurring considerable cost and slow training.

» In DeepO-X, Mamba clearly outperforms to propagate the entire temporal dynamics in the
complicated latent space.

» In FNO+X, the temporal model’'s effect seems minor as it only propagates partial temporal
dynamics on each fixed spatial grid but not the entire dynamics.arial




Deep Neural Operators as Foundation Models for Digital Twins

DeepONet

Loss of
Operator

DeepONet
Gp

Measurements



DeepONets for Compressible Non-Equilibrium Flows

e A complex, multi-physics and multi-scale
problem with scarce data

e Instability waves interact with the boundary
layer on the flight vehicle and can amplify
exponentially.

e At high Mach numbers, the gas
dissociation/association rates are
commensurate with the flow.

e Once finite amplitude perturbations form,
nonlinear interaction spur the generation of
harmonics and ultimately break down to
turbulence.

e Many instability waves are possible, each with R I

unique characteristics. - Compressed regions are light
*  Expanded regions are dark

e The flow state is extremely sensitive to
disturbance environment.

Jahanbakhshi & Zaki, %%9 DEEP
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Compressible Navier-Stokes with finite-rate chemistry

__________

o e — -

] DeepONet Gy / p’N(x)\i
| i
_______ | DeepONet G, -|—v:r p' o (x)

e ng’_Q:r_-_ j-_,___'
J_; DeepONet (T T (x)

— e o o o S S e ———

p Nz(x) """"
* P 9o (X)
)peratg
Loss of
measurements
Minimize L,
1 1 1
L =wp—~Lgata + WO_Eop =+ WRffreg +weg—Lg
ng no ng
Edata - ’ data mJ H +ZH data )H2 ﬁfreg - HGH%
where, p* = pi, + p5, + PN + 95 + Pvo
Nop Nop

Lop = Z U () = U (z)]* + Z IT* (2;) — T (z;)|?
CRUNCH

ng
e Lo = llp"U" (x;) = Const .|
. j=1
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Simulation of Electro-Convection

u (NN output)

DeepONet G, w'(x.y) ) ’ -~ j io
DeepONet G, v'(xy) DeepONet ; :

fl' v
@[T «» Bl e —
\ DeepONet G .+ ct'(xy) -
AN Qi DeepONet G- c'(xy)

¢ (NN output)

1
- U“'S
0

data ——(——— fossof e Totalloss
measurements
e A neural network is used to approximate the
Governing Equations: solution of ¢
e u,v,c',c are hidden outputs
o + hidd tput
= 2 f
ot Ve Viudt e, e Loss function:
V-u=0, argminl = Lo, + Ldata + L2(P)
272 ®
—2e"V ql) = Pe 1 Ny
+ _ AN i i\ |2
Oc :—V-Ji, ﬁdata — NdZHdeata (xvy) qb(w,y)H
ot N
J* = cFu— Vet F Vo ~ AL
Feove Lop= = S0/ () — & (")
P =1
= Cai S, Wang Z, Lu L, Zaki TA, Karniadakis GE. DeepM&Mnet: Inferring the electroconvection multiphysics fields based on operator S DEER NG
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Performance Metrics

Problem # of # of Accuracy | Speed-up | Reference

physical | scales 10™

fields 10"
Electroconvection 6 3 3 10,000X J. Comp. Phys. 2021
Hypersonic flow 7 8 3 100,000X J. Comp. Phys. 2021
High-speed boundary 5 2 3 40,000X  arXiv:2105.08697
layer

Important considerations

N.: Number of simulations to generate data C.: Cost of training DeepONet

C.: Cost of performing one simulation C.: Cost of evaluating DeepONet
New metrics Compressible Boundary Layer
« Training cost ratio R, = C;/ N,C, « R.=3.39

« Evaluation cost ratio R, = C./ C « R.=2.7x107

« Break-even number N.= N + C;/ C « N.=250

* Mao Z, Lu L, Marxen O, Zaki TA, Karniadakis GE. DeepM&Mnet for hypersonics: Predicting the coupled flow and finite-rate chemistry
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DeepOnet as Foundation Model — Transfer Learning

U Transfer-Learning has continuous learning but stops after a few attempts; it does not care
about the performance of the source task when transferring knowledge (hence only forward

transfer).

Domain Visualization
Application Input Function Model Output
Target/s

Source
@ f L1 m! ﬁ L3
TL4
[ =0.25xx" €[0,1]?

Random boundary Vo+f(x)=0 (e 2 e
conditions (u,v) =0vVx=0 ‘
Go: f(x) = (w,v) = 4
u: X-Displacement r r I

Random input
conductivity field

V.(K(x)Vh(x)) =1

Darcy Flow K(x)~gg:(0,g((x, x’)) h(x)=0 vV x€dQ
(xr')? Go: K(x) > h(x)

Elasticity F)~GP(0,%(x,x"))
Model (x — x)"2 v: Y-Displacement 6
K(x,x')=exp|———5— - - U v
21 Material properties
l = 0.12, X, x’ € [0,1] ES =300- 105 ET1 =410 - 103' VT, =0.35
vs=03 | Ep, =410-10% vy, = 045 - | 4
TS o) 0 ® Vixnynt) Y
Random initial condition 6_1:= DV2u $a = (4 = Budevi? y u(x,,f,,:)
' v
hz(x)~§?(h2(x)|#(x),ff(x’x )) —=D. VZU + bu — vuz ®
Brgsse!ator 9(x,y,t = 0) = hy(x,y) = 0 T i
Diffusion- x € [0,1]%,t € [0,1]
Reaction ; 2 (x—x")"2 Go:ha(x,y) > v(x,y,t) . — — — L8
K(x,x") = o“exp |— >
System 2l Model parameter
L, = 0.12,1, = 0.4,6% = 0.15 _ br, =17,
bs = 2.2 by, = 30

= Deep transfer operator learning for partial differential equations under conditional shift for partial differential equations under
conditional shift , Goswami et al, Nature Machine Intelligence (December, 2022)



Multi-Task Neural Operators
Objective

Different model parameters

dau = DoV*u + a — (1 4 b)u + vu?
d;v = D;V*v + bu — vu?

b=1{172230..}

Different geometries
| V- (K(a)Vh(z)) = f()

Generalist (v K(x), f(x) are GRFs
DeepONet 1A

Different forcing terms

M _ pu+
E_ u af(u)l

+ F() = ul - w)e 0V
* fW=u(l-uw

 flw) = u(l — uz)
¢ F) = A1 - )

Multi-task regressor model for solving multiple PDEs at once;
Improve accuracy and efficiency compared to individual DeepONet
Network will use same trained parameters to solve PDEs

How?: Incorporate information to the input data or modify trunk net



Building DeepDTnet for Digital Twins from Bottom Up

Compounds

DeepDTnet RA-DT

DeepM&Mnet :;

[
|
|
|
|
ce (A’i : Data assimilation &
“ ] Active learning (offfine)
Molecules | .
| *) | i
s | mm Physical Twi
: DeepOnet 4 >
AtOI'nS 1 Glu)(y) ~ ii(fn (i&fﬂt-_.iﬁ! + Hf) o(wg -y + G) Relnforcemen!:
P I R e Learning (online)

) | e AN\, S iaseaae \
1 : ch 2 Problem setup | [
| 1) : nat b - G:ur— G(u) | I
| =t N RT-DT
I . : I , I
\ - / \ Digital Twin for optimal control ,
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Summary

Neural networks are universal approximators of functions, functionals and nonlinear operators
DeepOnet was designed based on theorem of Chen & Chen and it was extended to deep NNs

DeepOnet has some resemblance to biological neurons

DeepOnet converges exponentially fast with the training data but in practice it saturates for big data
In addition to learning mathematical operators, DeepOnet can learn multiscale operators
Physics-informed DeepOnet can enhance accuracy and generalization but hybrid training is more robust
Fourier neural operator (FNO) is a subcase of the DeepOnet framework

Neural operators can be used as building blocks for multiphysics problems and digital twins

The accuracy of neural operators can be enhanced with expansion features added to the branch and trunk nets

L 0o 0o 0 0 o0 o0 o0 00

Rigorous theory for neural operators has already been developed
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Advantages and Limitations of Different Methods

WNO

FNO

LNO

Advanced LNO

Accurate tracking of
patterns in spatial
domain

Can handle PDEs with
discontinuities and
abrupt changes in the

 Fastest with similar

training parameters

» Highest accuracy for
interpolation in simple
cases

Consider both transient
and steady-state
response

Highest accuracy for
extrapolation

Highest accuracy for

* Include all advantages
from FNO and LNO

Advantages solution domain and no damping systems
the boundary and systems with
multiple equilibrium
Predict outputs at any
arbitrary locations
Less accurate than « Only steady-state Less accurate than * More number of
FNO for interpolation in response FNO for interpolation in parameters need to be
simple cases * Input and output have simple cases due to trained and tuned.
Limitations Needs to try different same discretization strict formulation of

types of discrete
wavelets

training parameters
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