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Basis-specific Neural Operators

• Graph Neural Operator [1]

• Low-rank Neural Operator

• Multipole Graph Neural Operator

• Fourier Neural Operator [2]

• Wavelet Neural Operator [3]

[1] Kovachki, N. et al. (2021). Neural operator: Learning maps between function spaces.

[2] Li, Z. et al. (2020). Fourier neural operator for parametric partial differential equations.

[3] Tripura, T. and Chakraborty, S. (2022). Wavelet neural operator: a neural operator for parametric pdes.



2

Considering the generic family of PDEs of the following form:

where ℒ𝑎 is a differential operator depending on a parameter 𝑎.

When the input is the delta measure centered at 𝑥, namely,

𝑓 𝑥 = 𝛿𝑥, the unique solution of Eq. (1) is defined as the

Green’s function 𝐺𝑎, that is,

(1)

(2) 

(3)

Since the source term 𝑓 𝑥 in Eq. (1) is a sum of delta

functions, the solution of Eq. (1) can be represented as Eq.

(3) by applying the superposition principle:

Building the solution for a general source based on 

Green’s function [1]  

[1] https://en.wikipedia.org/wiki/Green%27s_function

Integral Kernel – Green’s Functions
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(3)

Guided by Eq. (3), the following iterative architecture is proposed [2]:

(4)

where 𝜎 is the activation function, the matrix 𝑊 and the kernel 𝜅𝜙 are modeled as neural networks,

which are learned from data.

• Expensive cost• Monte Carlo approximation

• Convolution theorem • Multiplication in the other domain

𝑢 𝑥 = න
𝐷

𝐺𝑎 𝑥, 𝑦 𝑓 𝑦 𝑑𝑦

𝑣𝑡+1 𝑥 = 𝜎 𝑊𝑣𝑡 𝑥 +න
𝐷

𝜅𝜙 𝑥 − 𝑦 𝑣𝑡 (𝑦)𝑑𝑦

[2] Li, Z. et al. (2020). Neural operator: Graph kernel network for partial differential equations. arXiv preprint arXiv:2003.03485.

Neural Operators
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Convolution Theorem

𝒲(𝑘𝜙)𝒲(𝑣)

Inverse Fourier transform

Fourier transform
න
𝐷

𝜅𝜙 𝑥 − 𝑦 𝑣 𝑦 𝑑𝑦 ℱ(𝑘𝜙)ℱ(𝑣)

ℒ(𝑘𝜙)ℒ(𝑣)

𝑣𝑡+1 𝑥 = 𝜎 𝑊𝑣𝑡 𝑥 + ℱ−1(ℱ(𝑘𝜙)ℱ(𝑣) )

𝑣𝑡+1 𝑥 = 𝜎 𝑊𝑣𝑡 𝑥 + ℒ−1(ℒ(𝑘𝜙)ℒ(𝑣) )

𝑣𝑡+1 𝑥 = 𝜎 𝑊𝑣𝑡 𝑥 +𝒲−1(𝒲(𝑘𝜙)𝒲(𝑣))

• Fourier Neural Operator [4]

• Laplace Neural Operator [3]

• Wavelet Neural Operator [5]

[3] Cao, Q., Goswami, S., & Karniadakis, G. E. (2023). LNO: Laplace neural operator for solving differential equations. 

[4] Li, Z. et al. (2020). Fourier neural operator for parametric partial differential equations.

[5] Tripura, T. and Chakraborty, S. (2022). Wavelet neural operator: a neural operator for parametric partial differential equations.
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Fourier Transform
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Fourier Transform
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Relation between Laplace transform and Fourier transform

ℒ 𝑓 𝑡 = න
0

∞

𝑓(𝑡)𝑒−𝑠𝑡𝑑𝑡

𝑠 = 𝜆 + 𝑖𝜔

ℒ 𝑓 𝑡 = න
0

∞

𝑓(𝑡)𝑒−𝜆𝑡𝑒−𝑖𝜔𝑡𝑑𝑡

• Laplace transform of 𝑓 𝑡 is the Fourier transform of 𝑓 𝑡 𝑒−𝜆𝑡

• Letting           , Laplace transform becomes Fourier transform 𝜆 = 0

Visualization of transform functions: (a) 2D plot; (b) 3D plot

（5）

（6）

A
B

(b) 

(a) 

A

B
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Relation between LNO and FNO

𝑈1(𝜔) = 𝐾𝜙 𝜔 𝛼(𝜔)

𝑢1 𝑥 = 

ℓ=−∞

∞

𝑈(𝜔ℓ) 𝑒
𝑖𝜔ℓ𝑥

𝑢1 𝑥 = 

ℓ=−∞

∞

𝛼ℓ𝐾𝜙 𝜔ℓ 𝑒𝑖𝜔ℓ𝑥

FNO

Fourier transform

Inverse Discrete 

Fourier transform

𝑢1 𝑥 = න
0

∞

𝜅𝜙 𝑥 − 𝑦 𝑣 𝑦 𝑑𝑦

𝑢1 𝑥 = න
0

∞

𝜅𝜙 𝑥 − 𝑦 𝑣 𝑦 𝑑𝑦

𝑈1 𝑠 = 𝐾𝜙 𝑠 𝑉(𝑠)

𝑈1(𝑠) = 

𝑛=1

𝑁
𝛽𝑛

𝑠 − 𝜇𝑛


ℓ=−∞

∞
𝛼ℓ

𝑠 − 𝑖𝜔ℓ

𝑈1 𝑠 = 

𝑛=1

𝑁
𝛽𝑛𝑉(𝜇𝑛)

𝑠 − 𝜇𝑛
+ 

ℓ=−∞

∞
𝛼ℓ𝐾𝜙(𝑖𝜔ℓ)

𝑠 − 𝑖𝜔ℓ

𝑢1 𝑥 = 

𝑛=1

𝑁

𝛽𝑛𝑉(𝜇𝑛)𝑒
𝜇𝑛𝑥 + 

ℓ=−∞

∞

𝛼ℓ𝐾𝜙(𝑖𝜔ℓ)𝑒
𝑖𝜔ℓ𝑥

Residue theorem

Laplace transform

Inverse Laplace transform

LNO

Steady-state response
Transient response

（7）

（8）

（9）

（10）

（12）

（13）

（14）

（15）

（11）
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𝒲 𝑎, 𝑏 = න
𝐷

𝑣 𝑥
1

𝑎
𝜓

𝑥 − 𝑏

𝑎
𝑑𝑥

Wavelet transform

Relation between Wavelet transform and Fourier transform (WNO and FNO)

when one considers the complex exponential 𝜓 𝑥 = 𝑒−𝑖𝜔0𝑥,

then :

𝒲 𝑎, 𝑏 = න
𝐷

𝑣 𝑥
1

𝑎
𝑒−𝑖𝜔0

𝑥−𝑏
𝑎 𝑑𝑥

Performing 𝜏 =
𝑥−𝑏

𝑎
, then:

𝒲 𝑎, 𝑏 = 𝑎න
𝐷

𝑣 𝑎𝜏 + 𝑏 𝑒−𝑖𝜔0𝜏 𝑑𝜏

when 𝑎 = 1 , and use window function 𝑤 𝑡 , the above

equation becomes short-time Fourier transform.

Since the short-time Fourier transform

can be derived from wavelet transform,

the FNO may be regarded as a special

case of WNO [5].

[5] Tripura, T. and Chakraborty, S. (2022). Wavelet neural operator: a neural operator for parametric partial differential equations.

[6] Bruns, A. (2004). Fourier-, Hilbert-and wavelet-based signal analysis: are they really different approaches. Journal of Neuroscience Methods, 137(2), 321-332.
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Algorithmic Framework for Neural Operators 
1
0

➢ Lifting input 𝑓 𝑥 to a higher dimensional representation 𝑣 𝑥 by a linear transformation

➢ Laplace layer/ Fourier layer/Wavelet layer

➢ Projecting 𝑢 𝑥 back to the original dimension

𝒫

𝒬
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Fourier Layer
1
1

Procedure:

➢ Initialize training parameters 𝜽 = (𝐾𝜙 𝑖𝜔1 , ⋯ , 𝐾𝜙 𝑖𝜔1 ) in the frequency domain

➢ Obtain 𝛼(𝜔) by performing FFT of input

➢ Perform the multiplication 𝑈1(𝜔) = 𝐾𝜙 𝜔 𝛼(𝜔)

➢ Perform IFFT of 𝑈1 𝜔 to obtain the output of Fourier layer

Schematic representation of Fourier layer（adopted from Ref. [4]）

[4]  Li, Z. et al. (2020). Fourier neural operator for parametric partial differential equations.
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Wavelet Layer
1
2

Wavelet layer

Procedure:

➢ Initialize training parameters 𝜽 = (𝒲 𝑘𝜙1 , ⋯ ,𝒲(𝑘𝜙𝑁) ) in the wavelet domain

➢ Obtain 𝒲(𝑣) by performing wavelet transform of input

➢ Perform the multiplication

➢ Perform inverse wavelet transform of 𝒲(𝑢1) to obtain the output of wavelet layer

𝒲(𝑢1) = 𝒲(𝑘𝜙)𝒲(𝑣)

Schematic representation of wavelet layer（adopted from Ref. [5]）

[5] Tripura, T. and Chakraborty, S. (2022). Wavelet neural operator: a neural operator for parametric partial differential equations.
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Laplace Layer
1
3

Procedure:

➢ Initialize training parameters 𝜽 = 𝜇1, ⋯ , 𝜇𝑁, 𝛽1, ⋯ , 𝛽𝑁, , where 𝜇𝑛 and 𝛽𝑛 are trainable system

poles and residues

➢ Obtain input poles 𝑖𝜔ℓ and residues 𝛼ℓ by performing signal decomposition methods of

input, such as FFT, Prony-SS

➢ Calculate output residues 𝛾𝑛 and 𝜆ℓ

➢ Compute output by 𝑢 𝑥 = 

𝑛=1

𝑁

𝛾𝑛𝑒
𝜇𝑛𝑥 + 

ℓ=−∞

∞

𝜆ℓ𝑒
𝑖𝜔ℓ𝑥

Schematic representation of Laplace layer (adopted from Ref. [3])

[3] Cao, Q., Goswami, S., & Karniadakis, G. E. (2023). LNO: Laplace neural operator for solving differential equations. .
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Advanced LNO
1
4

Procedure:

➢ Initialize training parameters 𝜽 = 𝜇1, ⋯ , 𝜇𝑁, 𝛽1, ⋯ , 𝛽𝑁, 𝐾𝜙 𝑖𝜔1 , ⋯ , 𝐾𝜙 𝑖𝜔1

➢ Obtain input poles 𝑖𝜔ℓ and residues 𝛼ℓ by performing FFT of input

➢ Perform the multiplication 𝑈(𝜔) = 𝐾𝜙 𝜔 𝛼(𝜔)

➢ Compute steady-state output 𝑢𝑠𝑡 𝑥 by IFFT

➢ Calculate output residues 𝛾𝑛

➢ Compute transient output by 𝑢tr 𝑥 = 

𝑛=1

𝑁

𝛾𝑛𝑒
𝜇𝑛𝑥

Schematic representation of advanced Laplace layer

• When transient part is zero, the

advanced LNO becomes FNO.

• Three parts can have different lifting

dimensions.
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Fourier Neural Operator (FNO) for Parametric Partial Differential Equations

▪ Li Z, Kovachki N, Azizzadenesheli K, Liu B, Bhattacharya K, Stuart A, Anandkumar A. Fourier neural operator for parametric partial differential 

equations. arXiv preprint arXiv:2010.08895. 2020 Oct 18.

Idea: The main network parameters are defined and learned in the Fourier space rather than the physical space.

Q

+
W

Fourier layer

Fourier layer 1 Fourier layer 2 Fourier layer L. . .P

Features
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Structure of FNO 

▪ Li Z, Kovachki N, Azizzadenesheli K, Liu B, Bhattacharya K, Stuart A, Anandkumar A. Fourier neural operator for parametric partial differential 

equations. arXiv preprint arXiv:2010.08895. 2020 Oct 18.
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Fourier Layer using Fast Fourier Transform (FFT)

+
W

Fourier layer
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Implementation of Fourier Neural Operator (FNO) 



Dynamical Systems & PDEs：Relative 𝓛𝟐 errors of several examples

Relative ℒ2 error in the test cases for all the ODE and PDE cases and for different

scenarios considered in each example. The plot shows the mean and the standard

deviation of the error that has been computed based on five independent training trials.
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Differences between DeepONet and FNO
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DARPA-BAA-14-62    ICONS  21A Comprehensive and Fair Comparison of Two Operator-Regression Networks (with practical extensions) 
based on FAIR Data

DeepOnet@Brown vs. FNO@Caltech

▪ Lu L, Meng X, Cai S, Mao Z, Goswami S, Zhang Z, Karniadakis GE. A comprehensive and fair comparison of two neural 

operators (with practical extensions) based on FAIR data. arXiv preprint arXiv:2111.05512. 2021 Nov 10.
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dFNO+: Operators with inputs/outputs defined on different domains
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dFNO+: Operators with inputs/outputs defined on different domains
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gFNO+ for Operators with inputs/outputs defined on a complex 

geometry
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DeepONet and FNO with feature expansion



Branch Net

Co-
ordinates

Spikes

Vertices/Edge
s

Trunk Net

Basis Functions

Basis Coefficients

.

.

.

.

.

.

Trunk Input

Branch Input   

Features

DNNs

1-D feature 2-D feature Hierarchical 
graph data

GNNs SNNs

DNNs GNNs SNNs

DeepOnet provides a plurality of Neural Operators



DeepONet

DeepONet+KAN

(x,t)trunk net

branch net A(x,t)

branch net

trunk net (x,t)

A(x,t)

DeeOnet with Kolmogorov Arnold Network (KAN) on the trunk:

DeepOKAN 

[416,200,100,100,32]

[3,32,32,32] 

Chebyshev polynomial order 7

[3,16,24,32]

[416,200,100,100,32]

KAN refs:  github.com/KindXiaoming/pykan

Shukla et al., arXiv:2406.02917 

https://github.com/KindXiaoming/pykan
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Thermal Reactor Data  

43 cases, each case has temperature data at 16 nodes in time domain [0, 2500s]



DeepONet setup
find a mapping from amplitude( A(x,t) ) to stress ( S11(x,t) )  

x (x,z), node coordinates t time 

Branch net: A(x,t) 
Output:   S11(x,t)

Trunk net:

A(x,t)  and S11(x,t) are uniformly interpolated into 26 points in time domain [0, 25000s]

A(x,t) is rescaled by 1/508

S11(x,t) is rescaled by 8000

Data: 43 cases; 34 for training; 9 for testing (randomly selected)



Comparison between MLP and KAN on S11 stress

DeepOnet

test error: 6.63%
DeepOnet+KAN

Test error: 2.60%



DeepO-Mamba





Our latent approach cleverly encodes the high-dimensional PDE solutions discretized on the 173

3D dense spatial grid to very low-dimensional vectors, facilitating SSMs to learn the temporal 
dynamics.

In contrast, FNO requires inputting the entire huge 3D tensor corresponding to the discretized 3D 

grid, incurring considerable cost and slow training.

In DeepO-X, Mamba clearly outperforms to propagate the entire temporal dynamics in the 
complicated latent space.

In FNO+X, the temporal model’s effect seems minor as it only propagates partial temporal 

dynamics on each fixed spatial grid but not the entire dynamics.arial

DeepO-Mamba: BELTRAMI FLOW



Deep Neural Operators as Foundation Models for Digital Twins
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DeepONets for Compressible Non-Equilibrium Flows

1 2 3

Jahanbakhshi & Zaki, 2019

Numerical Schlieren:
• Compressed regions are light
• Expanded regions are dark
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DARPA-BAA-14-62    ICONS  36
Compressible Navier-Stokes with  finite-rate chemistry

𝑥 NN

Total loss
Loss of 

measurements
—Data

𝑈(𝑥)
𝑇(𝑥)

Loss of 

Operators

DeepONet 𝐺𝑈

DeepONet 𝐺𝑇

𝑈’(𝑥)

𝑇′(𝑥)

DeepONet 𝐺𝑂 𝜌′𝑂(𝑥)

𝜌′𝑁𝑂(𝑥)DeepONet 𝐺𝑁𝑂

𝜌′𝑁2(𝑥)DeepONet 𝐺𝑁2

𝜌′𝑂2(𝑥)DeepONet 𝐺𝑂2

DeepONet 𝐺𝑁 𝜌′𝑁(𝑥)

—

▪ Mao Z, Lu L, Marxen O, Zaki TA, Karniadakis GE. DeepM&Mnet for hypersonics: Predicting the coupled flow and finite-rate chemistry 

behind a normal shock using neural-network approximation of operators. Journal of Computational Physics. 2021 Dec 15;447:110698.
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DARPA-BAA-14-62    ICONS  37
Simulation of Electro-Convection

▪ Cai S, Wang Z, Lu L, Zaki TA, Karniadakis GE. DeepM&Mnet: Inferring the electroconvection multiphysics fields based on operator 

approximation by neural networks. Journal of Computational Physics. 2021 Jul 1;436:110296.
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Problem # of 

physical 
fields

# of 

scales 
10n

Accuracy 

10-m

Speed-up Reference

Electroconvection 6 3 3 10,000X J. Comp. Phys. 2021

Hypersonic flow 7 8 3 100,000X J. Comp. Phys. 2021

High-speed boundary 

layer

5 2 3 40,000X arXiv:2105.08697

Performance Metrics

New metrics

• Training cost ratio Rt = Ct / NsCs

• Evaluation cost ratio  Re = Ce / Cs

• Break-even number Ne = Ns + Ct / Cs

Important considerations
Ns:  Number of simulations to generate data
Cs:  Cost of performing one simulation

Compressible Boundary Layer

• Rt = 3.39
• Re = 2.7 x 10-5

• Ne = 250

Ct:  Cost of training DeepONet
Ce:  Cost of evaluating DeepONet

▪ Mao Z, Lu L, Marxen O, Zaki TA, Karniadakis GE. DeepM&Mnet for hypersonics: Predicting the coupled flow and finite-rate chemistry 

behind a normal shock using neural-network approximation of operators. Journal of Computational Physics. 2021 Dec 15;447:110698.



Applications

▪ Deep transfer operator learning for partial differential equations under conditional shift for partial differential equations under 
conditional shift , Goswami et al, Nature Machine Intelligence (December, 2022)

❑ Transfer-Learning has continuous learning but stops after a few attempts; it does not care 
about the performance of the source task when transferring knowledge (hence only forward 
transfer).

DeepOnet as Foundation Model – Transfer Learning



Multi-Task Neural Operators



Building DeepDTnet for Digital Twins from Bottom Up
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Summary

❑ Neural networks are universal approximators of functions, functionals and nonlinear operators

❑ DeepOnet was designed based on theorem of Chen & Chen and it was extended to deep NNs

❑ DeepOnet has some resemblance to biological neurons

❑ DeepOnet converges exponentially fast with the training data but in practice it saturates for big data

❑ In addition to learning mathematical operators, DeepOnet can learn multiscale operators

❑ Physics-informed DeepOnet can enhance accuracy and generalization but hybrid training is more robust

❑ Fourier neural operator (FNO) is a subcase of the DeepOnet framework

❑ Neural operators can be used as building blocks for multiphysics problems and digital twins

❑ The accuracy of neural operators can be enhanced with expansion features added to the branch and trunk nets

❑ Rigorous theory for neural operators has already been developed



Advantages and Limitations of Different Methods

43

WNO FNO LNO Advanced LNO

Advantages

• Accurate tracking of 

patterns in spatial 

domain

• Can handle PDEs with 

discontinuities and 

abrupt changes in the 

solution domain and 

the boundary

• Fastest with similar 

training parameters

• Highest accuracy for 

interpolation in simple 

cases 

• Consider both transient 

and steady-state 

response

• Highest accuracy for 

extrapolation

• Highest accuracy for 

no damping systems 

and systems with 

multiple equilibrium 

• Predict outputs at any 

arbitrary locations

• Include all advantages 

from FNO and LNO

Limitations

• Less accurate than 

FNO for interpolation in 

simple cases

• Needs to try different 

types of discrete 

wavelets

• Only steady-state 

response

• Input and output have 

same discretization

• Less accurate than 

FNO for interpolation in 

simple cases due to 

strict formulation of 

training parameters

• More number of 

parameters need to be 

trained and tuned.
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Thank you!

• Cai S, Wang Z, Lu L, Zaki TA, Karniadakis GE. DeepM&Mnet: Inferring the electroconvection multiphysics fields based on 

operator approximation by neural networks. Journal of Computational Physics. 2021 Jul 1;436:110296.

• Goswami S, Yin M, Yu Y, Karniadakis GE. A physics-informed variational DeepONet for predicting crack path in quasi-brittle 

materials. Computer Methods in Applied Mechanics and Engineering. 2022 Mar 1;391:114587.

• Lanthaler S, Mishra S, Karniadakis GE. Error estimates for DeepOnets: A deep learning framework in infinite dimensions. 

arXiv preprint arXiv:2102.09618. 2021 Feb 18.

• Li Z, Kovachki N, Azizzadenesheli K, Liu B, Bhattacharya K, Stuart A, Anandkumar A. Fourier neural operator for parametric 

partial differential equations. arXiv preprint arXiv:2010.08895. 2020 Oct 18.

• Lu L, Jin P, Pang G, Zhang Z, Karniadakis GE. Learning nonlinear operators via DeepONet based on the universal 

approximation theorem of operators. Nature Machine Intelligence. 2021 Mar;3(3):218-29.

• Lu L, Meng X, Cai S, Mao Z, Goswami S, Zhang Z, Karniadakis GE. A comprehensive and fair comparison of two neural 

operators (with practical extensions) based on FAIR data. arXiv preprint arXiv:2111.05512. 2021 Nov 10.

• Mao Z, Lu L, Marxen O, Zaki TA, Karniadakis GE. DeepM&Mnet for hypersonics: Predicting the coupled flow and finite-rate 

chemistry behind a normal shock using neural-network approximation of operators. Journal of Computational Physics. 2021 

Dec 15;447:110698.
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