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“But as a proof of concept it's a total success.”
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Motivation

@000 Gl'aphs are everWhere F|g * molecular graph
abstractions [1], IMS [2].

. P s = o o [1]
m Graphs =vertices + edges T A &
= Universal representation for structured data. T ':"@ e
= Social networks (people, messages), biology (atoms/proteins, - @ Y{j
chemical bonds), sensor networks (stations, geodesic), P
recommendation (users/items, ratings), transportation (cities, '*m o 15 4 |
roads/flights), etc. b e

m Graphs help us ask — and sometimes answer — fundamental
guestions about structure and interaction

m What is the structure of a network ? Are there parts? (clustering)
m Do the parts look the same? (similarity, isomorphism)
m How can we model a set of graphs? (models)

[1] Kengkanna & Ohue, doi: 10.1038/s42004-024-0115-w, 2024,
[2] Gaebler & Ceranna, doi:10.1007/s00024-020-02604-y, 2021.
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Motivation
oceoco When graphs are ignored

About the event .
m Accidental explosion (Beirut, Aug. 4, 2020). .
m 2.7 kt of Ammonium Nitrate (NH,NO,).

[0 LF fle

CQ.ALEF kﬁ“" 7
350N Co s o ATHARIATco Mvou I
S u\’-’J e |
Global to local graphs po- oo R —

m Recorded by the IMS and regional networks (INSN, 3a°N
Israel National Seismic Network).

m Infrasound stations: ~ 103 km. ) 33°N
Seismic stations (A A ~): ~ 102 km.
. ( ) A~ 101 -10°m

m IS + seismic at 10% km (A). (N ~ 2 - 102 320N
= Publicly available videos (~ 102 m).J

-IMACYZOI

Magnitude/yield?

= Many magnitude estimates from empirical laws
and various tech. > W =~ 0.13 — 2 kt TNT [*].

m Solving the inverse wave propagation problem.
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Motivation L —sesmc 4| | s Seismic signals
- - 2 | =S (ERAB)
ocoeo Does simulation help? — IS (WRF) - M

1.0 {gum
Yield estimates (Beirut, 2020) z
m Using Green’s functions of the UJAM\WA

wave equation (SEM3D) + signals.
InfraSound (1S)

A —— ERA5
~—— WREF coarse
—— WREF fine

0.8 |-

0.6 |-

”Ss — §s”

. N A
min 25=1“Ss — S|l
w 0.4}
m s, =5s,(W) *; G; sy: source model.
m §, s: recorded and simulated signals. 0.2

00 7 102 1f!3| \ 10° 10°
W| (t TNT)
2 _

SEM3D:

1 day (10% cores)
for 8 min.

m Using a compressible flow solver 0.0 L
and videos of shock dvnami

HERASID:

10h (10° cores)
for 10 s.

i, | ==
260 300 340 Distance (km)
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Motivation

oooe GraphCast* (2022) 4

An example of GNN
m 36.7 10° parameters.

Input weather state

GraphCast

m Multi-mesh derived from
icosahedral meshes, from
M to M® (40962 nodes).

m Predicts ~ 100s of weather
variables over 10 days at
0.25° resolution, in < 1 min.

@ Encoding/decoding with a
single layer.

@ MPNN: L = 16 layers to
propagate information from
local to global scale.

*arXiv 2212.12794
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Roll out a forecast
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Laplacians, GFT, convolution, spectral and
spatial approaches

1 Preliminaries
B
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Preliminaries
ecoooooo Basic definitions

m Basic definitions

m Learning tasks on graphs f:(G,X) = Y, X € RIVIX¢ (¢: dim.).

Graph: ¢ = (V,E), V: set of nodes (vertices); E c V X V: set of edges.
Edges can be directed or undirected.

A graph is connected when, for any two nodes i and j, there exists a
sequence of edges forming a path from i to j.

Adjacency and degree matrices A,D € RIVIxIVl
1, (v;,v;) €E
A = ( L ])

= and D: = Y. A ..
Y 0, (Ui, U]) ¢ E ' Z] Y

For directed graphs, we have in-degree D™ and out-degree DU,

Node-level app. (graph clustering, classification of web pages).
Edge-level app. (traffic prediction, recommendation systems).
Graph-level app. (molecule classification, point cloud analysis).
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Preliminaries
oeoooocoo Combinatorial Laplacian —

m Definition and key properties

m Unnormalized Laplacian: &) (4)
L=D-A,
For X € Rlvl, (LX)l = Z]Al](xl - X]) @ -
m Symmetric, positive semi-definite: ?_ (Q O)_ 0 = ( 11 —21 01>
1 2 - 2 2 a
XTLX =23, %, 4 (x — ;)" 2 0, 0 Q 0 -1 1
XTLX = 0 (total variation = 0) characterizes signals with zero Xq) =212 - 1A - 3)
variation (see @) across the graph, i.e. x; = x; for any (i, ). = m, 0) =2
» Diagonalization: L = UAU*, with A = diag (44, ..., A1), 4 € R. @
L1 = 0 = multiplicity m; of A = 0 (dim(ker L)) equals the number  yTyx — —10

of connected components (see @).
An intuitive approach: U = nodes X spectral modes
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Preliminaries

ooeooooo Other definitions o ={0,1+1/V2)
Uy
m Symmetric normalized Laplacian
m L gives more weight to high-degree nodes (hubs) in the energy
computation — topological bias. U
m Def.: Lsym = D™Y/2LD"Y/2 =1-D"1/2AD"%/2, u,
m Counteract topol. bias by scaling sender and receiver contributions.
s o(L) C [0, miaxDl-] = (Leym) € [0,2], i€, Imax < 2. IV -1 0
m Applications: spectral filtering, GCNSs, Laplalcian Encodings, ... Lsym = NAGE V2 0
0 0 0
m Random walk (rw) Laplacian 1/2 -1 -1
Def. L =D !L=1-D"1A Lrw = ‘(‘2 20 )
u rw 2 0 0 0

m Normalizes only the sender, consistent with a rw’s view of the graph (each
node distributes its information over its neighbors) = ¢(L,,,) < [0,2]. Fig. Spectral and probabilistic

m Asym. operator that models directional diffusion, where information flows interpretations of Laplacian for

from v; to its neighbors v; with a Markov transition matrix P = D™*A. a small directed graph. Rand.
walker located at v; moves to

m Applications: diffusion models, APPNP, Personalized PageRank, ... vj with P;; = Pr(i - j).
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Preliminaries
oooeoooo A simple example (1/2)

m A (undirected) circular graph ¢ = (V,E)
m Each v; is connected to v;,, and v;_; and
E={(i,i+ 1mod|V])}.

m D = 2I (each node is connected to 2 nodes), A =] + JV1,
where J: circular shift matrix of order N = |V], i.e.

Jij = 0i(j+1) mod |v|-
m For N =4:

_ oo O
o O

0

0 N _
1 and JV = 1.
0

O OO K

0

m Use in energy-based models
m Circular graphs are used in energy-based models such as

Convolutional or Temporal Restricted Boltzmann Machines.

m These architectures leverage circular connectivity to
implement shared filters and translation invariance.

@ CEA — EDF — INRIA Summer School

Fig. : Action of A on a circular graph. The
operation aggregates forward and backward
shifts of a signal, yielding a discrete circular
convolution with kernel [1 0 1] and reflecting
the graph’s rotational invariance..
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Preliminaries
ooooeocoo A simple example (2/2)

m Spectral properties of the circular graph
m Since eigenvalues of ] are the N-th roots of unity (e?™/VN), the
eigenpairs of L are (LU, = 4, Uy,):
Ay = 2[1 —cos(2kn/N)] € R,
1 2kmij
(Uk);j —\/—Nexp( N )
m EachU, € ¢Vl (k=0,..,N — 1) represents a harmonic mode
over ¢ and A; € R measures how much the mode oscillates.

m All 4, (k # 0,N/2) appear in conjugate pairs, hence multiplicity 2 in
the real spectrum (related to the graph’s rotational symmetry).
m Signal reconstruction, for X € RI"!:
X = YN-3 X, U, with X, = U;X,
UR
Using U = (Uy - Upy) gives: X = U*X.

= X captures the signal's variation at different graph frequencies.
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Fig. : Frequency modes for a circular

graph with 8 nodes.
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Preliminaries

oooooeoo GFT and convolution Fig. : Graph convolution
with a heat kernel

G = e ™k and T = 1.0.

m Definition of the Graph Fourier Transform (GFT)
m GFT allows to express X € R!"l in terms of modes on the graph:

GFT: X = U*X and iGFT: X = UX.

= Total variation: or XTLX = YN=2 2, | %, |*.
= Parsevals identity: XTX = X*X = ¥V-1|%, |*.
m Convolution on agraph G:

m No abelian group structure: unlike R"™ or Z" a general graph lacks
translation invariance = no canonical convolution theorem.

m Convolution between f € RV and g € RI"!
f+,g=U(fOB) = f*; g = Udiag(g)U"f.
diag(®)f

m Spectral filtering: we reinterpret g as the sampling of a function
on the spectrum, i.e. g, = h(4;) = f x; g = Uh(A)U*f.
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Preliminaries
ooooooceo Limitations: cospectrality

Spectral graph convolution
m Requires eigendecomposition of the graph Laplacian:

fx; g = Uh(A)U'F.

= Impractical for large or changing graphs.

High computational cost: requires full eigendecomposition of the
Laplacian 0(|V|3®) — Lapack + machine-specific optimisations or
Lanczos method for sparse networks.

Graph-specific basis: eigenvectors U depend on graph topology =
not transferable across graphs.

Incompatible with dynamic graphs: any change in topology alters
o(A); same o(A) does no imply same graph = cospectrality.

Cospectral Graphs

0.25

0.2 1

0.15 1

0.1 1

Fraction cospectral

005

IV

Fig. : Fraction of non-isomorphic tree
(connected and acyclic) pairs that share
the same o, as a function of graph size, for
different matrix representations [1].

No locality: spectral filters are global by construction — they blend all

node information through U.

@ CEA — EDF — INRIA Summer School

[1] Wilson & Zhu, Pattern Recognition, 2008.
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Preliminaries
oooooooe From spectral to spatial theory

m Polynomial approximation and locality
m h can be approximated by a polynomial, leading to localized filters:
h(/l) = Zlk<=0 lelk =>f *¢ 8 = Zlk(zO Hkka’
where L¥ captures information from the k-hop neighborhood.

f e R1°

Fig. : Graph diffusion
under powers of the
Laplacian, starting from a
Dirac signal at node 2

But this is still fixed (non-learnable structure, no adaptation to the task).

m |dea: replace global spectral filtering with local spatial message passing: information is propagated

locally via learnable operations — a key idea behind Message Passing Neural Networks.
@ CEA — EDF - INRIA Summer School June 19th, 2025 15



MPNN, GCN, over-smoothing/squashing,
expressiveness, GAT, Graph Transformers

2 Graph Neural Networks
I

@ CEA — EDF — INRIA Summer School June 19th, 2025 16



Graph neural networks
ecoooooooo GNN layer

m GNN layer

m The basic idea is to update the state of each node through
embedding in a Cy,;-dimensional space at each GNN layer:
[R|V|><Ck R|V|><Ck+1
X&) layerk x(k+1)

m x}k) € R¢: denotes the feature vector at node j (i.e., the j-th row of X)),

. denotes the i-th channel of the graph signal, i.e., the i-th
column of X®.

<[1]

X11| X12\| X1
N EZEZE

X31 X32

Xa1| X42

m Spatial vs spectral

= MPN (€9): feature vector at each node is updated using

messages from neighbors.
= GCN (@)): each signal channel is transformed using graph

convolution.

@ CEA — EDF — INRIA Summer School June 19th, 2025 17



Graph neural networks
oeooocooooo Message Passing Network (€))

m AGGregate-UPdate operation
m The MP framework defines a GNN layer as:

ht = AGGM ((x{¥|v; € N (v,

x &+ _ ypk) (8 &
x{" = UP®) (x{, ).

m The AGGregate step can be either a fixed permutation-invariant 6 AGG

Google Research Blog. 2024

\ Fig. : Aggregation

and update
operation (e.g., ¥;, avg, mean) or a learnable function. operations.
m The UPdate step refines the aggregated message by combining it /9 UPDATE \
with the node's current state, allowing gating mechanisms (GRU) @
to control information flow. h(k) X_(k)
m By adding self-loops in the graph: @ ‘'m’

x“V=o( @& f(xx;00) O ;]

llv;eN(v
N(vj) 3 @ 8 e )
J

m o non-linear activation and 0% are trainable parameters.
m @ is a symmetric operator: )}, avg or max.

@ CEA — EDF — INRIA Summer School June 19th, 2025 18


https://research.google/blog/graph-neural-networks-in-tensorflow/

Graph neural networks Fig. : x ~ U(—LA]), @= 3. (+ norm.) 3-hop

ooeoocooocoo Aggregate, Update and Pooling neighborhood, with 8 = I.. Neighborhood
aggregation leads to feature homogenization

_ at depth. Initial
m Choiceof f

m [ can be given by:

i, Xi;0 ) = 0x;
f(X]:,(X],ej) )G(X X) or MLP(x;, X; — X;).

m For 0 = I this resembles the action of the Laplacian: x(k“) (LX("))]_.

m Aggregation over k-hop neighbors introduces k as a structural parameter.
This controls the receptive field at each layer.

m Normalization with respect to V'(v;) is often required to mitigate sensitivity to
varying neighborhood sizes and to improve stability during training.

s Graph pooling: to obtain a graph-level representation y € R¢:

@: denotes a permutation-invariant operation, used to compute a global graph
representation for tasks like molecule classification or event detection.

m Other approaches: graph coarsening, learned pooling (DiffPool, SAGPool).

@ CEA — EDF — INRIA Summer School
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Graph neural networks &
oooeoocoooo Graph Convolutional Networks (€))
Lsym = 2AmaxLsym — 1 = 0(Lsym) © [-1,1].

m Learning Convolutional Filters W Ak
APProX. Amax = 2 and 6;;5 = =67 .
m Each channel CNN
xVI04D = g(pok, %[00 1 w9, 4 ) 4 )
| “© | | L=D—-A |¢ A
where filters w;;” € RIV*IVl are approximated using Chebyshev
polynomials, i.e. w(1) = X0, 0, T (1) l
- C k - 11 211
xUIKHD = g(B7k FK 05 Ty (Lsym) x[060), D ZLD Z . D ZAD 2

~ ~ ~ LS m = —_ AS m
m Using Ty(Lsym) = Iand Ty (Lsym) = Lsym and keeping m = 0,1 gives Y Lspm = 1= Ak 7

the GCN approximation

U1k+1) — Ck (k) AT [i] ()
= g(x*, 6% (1 + D2AD 2)x11(0),

A Lsym — 1 > [+ Agym
h..v_/
In matrix form, the update rule hgf,)c): RIVIXCk — RIVIXCr+1 js given by Loym [ =1-[& A
. _/ g _J

K
x(k+1) — h((,u)c) (X®) = g(1+D ~3AD z)x(k>9(k))

spectral locality = spatial locality
@ CEA — EDF - INRIA Summer School June 19th, 2025 20




Graph neural networks

50008060000 [1] Rusch, Bronstein, Mishra, arxiv abs/2303.10993, 2023.
MPNN and GCN drawbacks[z] Li, Han & Wu, AIAA Conf on Al, 2018.

[3] Xu et al., arxiv: abs/1806.03536, 2018.
m Over-smoothing [1,2]

m For a GCN:

1 layer(s)

X+ — 6 AXOW),
After L |ayerS (O' = ld) 4 layer(s)
X0 = RKXO [TE-I wk, Q
m Repeated applications of the symmetrically normalized adjacency e\QQ\;&
matrix A cause spectral filtering with decaying modes - QX

AKX©® = AU X© — U, UsX @

K—oo

m Only the top eigenvector U; (often const.) survives (J(K) c [-1,1]), leading
to identical features for all nodes — over-smoothing.

m Influence distribution of the nodes [3]

(k) _ (k) Fig. : over-smoothing
m Influence score I, (v) = Tr(axl()o)xu ). X© g, X0 =
m For a standard MPNN or GCN, Iff"’) (v) ~ E(P*x,). A’JX(R)

m This links MP to stochastic diffusion on the graph and explains the
progressive loss of locality in deeper layers.
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Graph neural networks
oooooeocooo MPNN and GCN drawbacks

[1] Alon & Yahav, arxiv abs/2006.05205, 2020.

m Over-squashing [1] Bridge between

m |nability of GNNSs to capture long-range dependencies due to 2 clusters
compression of messages through paths y of G.

= From update to paths (X € RIVIXC)

K) _ wlV] ~x 0)
XV =xio (A, X7
Zyer‘g H(u,v) ey Ay

] l“,ij: set of all paths of length K from node i to node j.

m AK: aggregates the contributions of all sequences of K hops connecting j

to i, each weighted by the product of edge weights along y. Fig. : A graph and multiple paths

m Bottlenecks (Alon & Yahav, 2020) to connect v; (i = 1, ..., |V|) and v;.

m When a large number of paths from distant nodes must pass through a
limited set of intermediate nodes, these nodes are unable to carry sufficient
information due to the fixed C— over-squashing.
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Gra P h Neural Networks [1] LaszI6 Babai, arXiv:1512.03547, 2015.
0000008000 GNNS expressiveness [2] Hamilton, Synthesis Lectures on Al & ML, 2022.

Permutation invariance
) . L (G1,X4) (G2,X3)
= Amodel f(A,X) is permutation invariant if for all A € RIVI*IV all feature

matrix X € RIVI*¢ and all permutation matrix P € RIVIxIVI:
f(PAPT,PX) = f(A X)
Permutation equivariance: f(PAPT, PX) = Pf(A,X).
m Graph isomorphism

= Two graphs G, and G, are isomorphic if 3P € RIVIXIVI s.t. PA,PT = A,.
Extension to tuples (G4,X4) and (G, X5): l

f

PA,PT = A, and PX; = X,. /\K
m [ permutation invariant and (G, X;) ~ (G5, X,) = f(A1,X,) = f(A,,X5).

m Graph isomorphism testing is NP-indeterminate problem [1].
m Heuristic: Weisfeler-Lehmann (1-WL) [2].

m EXxpressive power of many MPNN-based GNNSs is upper-bounded by the
1-WL test — a heuristic for distinguishing non-isomorphic graphs.

Expr(f) < 1-WL
1 t-uple
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Graph Neural Networks
ooooooceoo Graph Attention Networks

m Back to the aggregation step
m The GAT framework [1] defines a GAT layer as:

(k+1) (k)
Xj =0 lz )aij(-)xi ],

or X(k+1) — J(aTX(k)ﬂ(k)T), where a;; = softmax(e;;)

i|viEN(‘l7j

el-j = a(Wxi, ij)lvje]\f(vi) .

[1] Velickovic et al., arxiv:1710.10903, 2017.
[2] Vaswani et al., NeurlPS, 2017.

[3] Brody et al., arxiv: 2105.14491, 2022.

[4] Xu et al., Arxiv:1810.00826, 2018

Fig. : attention-based
message passing for v;.
Thicker arrows indicate
higher importance.

m a:R% x R - R: 1-layer MLP (+ LeakyReLU) or inner product/cos. similarity. a;; @
3

= Multi-head attention [2] introduces M coefficients a;; and X;

m Close to GCNs in form: the GAT layer can be seen as a GCN where A is

replaced by a learnable attention matrix a”.

m GAT and Beyond
m GAT layers remain permutation invariant (as GCNS).

(k+1)

s GATV2 [3] resolves expressiveness issues by allowing e;; = aTa(W/|x;[|x;]).

m Limitations: like MPNNs, standard GATs are still limited by the 1-WL

expressiveness [4].
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= |la().
m
. exp(e;;)
Y Ykenwwy €xp(eir)
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N W
Gra P h Neural Networks [1] Dwivedi et al., arxiv:2003.00982, 2023.

[2] Vaswani et al., NeurlPS, 2017.
ooooooooeo Graph Transformers (3] Cite GPS, etc.
: Qutput
= From local to global attention Fig. : GT retain the modular —  probapittes
s Laplacian Positional Encoding [1,2], structure of transformers [2],
seqguences are replaced by ,
. = (U:: - U: k :
for v; we extract p; = (Uj; - Uy,) € R graphs = requires PE. r* .
m Serve as structural anchors for each node in the attention space, 'Addpi-e':‘”m a
enabling the model to reason about graph topology. ( ® Forward
m Allow the model to distinguish nodes with similar features but r _dd&N \
different topological roles, which is not possible using node features alone. _Fee{frm Mol Head
. . Forward T 7 N x
m Graph attention layers are defined by —F
_orm
Rt _ | k[ ok elkg® N | (AR Nom ) Vacked
J k=1 i|vie]\/‘(vj) ij 1 Mult-Head Mutti-Head
Attention Attention
1+1 l L t
x} D = Noo fo No(X]@ + h} )), ]
) Positional @_(? & Positional
m No: BatchNorm or LayerNorm; f: (nonlinear) MLP, x;™ = x; + Wp;; Encoding _t Encoding
. L. . Input utput
attention coefficients a/¥ are obtained from ef! = a(Wx;, Wx;)/,/C;. Embefding Emberdding
= Global attention if V'(v;) - V. \§ it J Outputs
(shifted right)
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Graph Neural Networks
oooooooooe Improving Expressivity: what’s beyond MPNNs?

m Add Features: enrich node/edge descriptors

Add domain knowledge or structural information (degrees, distances, orbits, etc.).

Random initial features to break symmetry [Sato et al., 2021].

Subgraph-based features: counts, motifs, positional encodings — GSN: Substruct. Net. [Bouritsas et al., 2022].
Effective resistance & hitting times [Topping et al., 2022].

Limitations: not always transferable; handcrafted choices may lack generality.

m Modulate Message Passing: adapt interactions

Use edge-dependent weights, attention, anisotropy — GAT: Graph Attention Networks [Velickovic et al., 2018].
ldentity-aware aggregation [You et al., 2021].

Directional aggregation from Laplacian eigenflows — DGN: Directional GNNs [Beaini et al., 2021].

Can capture fine-grained node distinctions & directionality.

Tradeoff: increased complexity, may amplify overfitting.

m Modify the Graph: act on the computation structure

Rewire the graph to enhance connectivity — DropEdge, digraph rewiring, adding virtual nodes.
Use high-order structures — k-WL GNNs [Morris et al., 2019], Ring-GNN [Chen et al., 2019].
Subgraph GNN [Zhang et al., 2021].

Encode hierarchy and locality — Nested GNNs, Hierarchical Pooling.

Drawback: cost scales with higher-order terms.

@ CEA — EDF — INRIA Summer School June 19th, 2025 26



3. Graph Neural Operators

NO, GNO and Spatio-Spectral GNO

@ CEA — EDF — INRIA Summer School June 19th, 2025 27



Graph Neural Operators

eocoo Neural Operators * Zongyi Li, Kovachki et al., 2021.

m Intuition of NO (t is ignored for simplicity)

m If G is the Green function of PDE L(a)x = f,then x = G * f.
= G is modelled as a kernel kg: G(p, q) = kg(p, q, a(p), a(q)) and
for any x: R - R™, a NO is defined by

Kox(p) = f <o (P, q, a(p), a(@)x(@)dq.

= FNO xg(p, g, c(p), c(q)) = ko(p — @) = Kox(p) = kg * X.
m Architecture of NOs
m The mapping is learnt iteratively:

©) ... ,x@
(a(p),p)?X P FZX gu(p),

Input: [a(p)];, p € R?

|

Uplift P

!

F-Fourier

4

R (Fourier filters)

F-Fourier

.

X = g ([WO+K(@)|XED + pY).

Proj. Q4

Proj. Qy

m P uplift layer, Q: projection layer.
m If Kis a convolution kernel, the convolution theorem leads to:
K(a)x = F~1(F (k) F(x))
R

m The weights R are learnt inside each layer.
@ CEA — EDF — INRIA Summer School

v

s (p. )],

!

[uN (pl’ tj)]i,j
Output: multiples projections (p; € R?).
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Graph Neural Operators
oceo From FNOs to GNOs

m Low-frequency truncation

m |n practice R is truncated to the first m modes to
obtain a low-rank operator acting on X,
m Convolution in a FNO can be re-written as:
(k+1) _ ~1 (k)
X G(Tl (RF (Pf )
Analogy GCN: U uTx®
m X&) e RV*Ck multi-channel field, R € R™*™,
m Extension to graphs

m The Fourier basis (FNO) can be replaced with
the graph Laplacian eigenbasis Uy,:

X*+D = y_R x, U} X®),

m Ue RVIXm R e R™CkXCkt1 and XK € RIVIXCk,
m X, refers to a mode-1 tensor contraction.

m The MLP in a FNO can be replaced by a MPNN.

distance (km)
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Fig. : 2D wave propagation in waveguides.
Input: sound speed c: R? - R, output:
waveforms u: R? - R; 4 layers, 48
neurons/layer, m is varied.
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Graph Neural Operators
ocoe Spatio-Spectral GNO

* Sarkar & Chakraborty, 2409.00604, 2024.

m Global Spectral Graph Convolution \
= General form of graph convolution: / 4 o
- C - k
xUIk+D) = g3k x 0D & wi(j N,
m *;: Graph convolution, defined as filtering via A, i.e. x x; w = Ugg (A)UTx.
w(] ): learnable spectral filters between channel i and j. For multi-valued

. W ,.

X0+ = g (U (R %, (URX®))).

m U,,: first m eigenvectors of A computed using Locally Optimal Block \ > Spatial GNN J
Preconditioned Conjugate Gradient (LOBPCG) algorithm — computational \ /
cost O(mk|V]) if G is obtained using the x-NN.

= Local Convolution with Spatial GNN Fig. - Neural architecture of a
S _ _ 0 block. It exploits spectral and
m Aggregation is limited to the 1-hop direct neighbors x;"’ € R spatial GNN to formulate the kernel
(k+1) _ (k) integration operator [1].
X" = Dipenwp GiWX;
n a;; = 0,(Ws01(Wy[hy|[h;|[|[W,w;;])): edge-weights are learned within a f concatenates the outputs of

gating mechanism, with w;; = ||p; — p; ||, where p; is the positions of node i ~ SPectral and Spatial GNNSs.

and h; is its Lipschitz embedding*.
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Dynamic GNN for

seismology
. Architectures, performance, interpretability,

over-smoothing, practice
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B W
Dynamic GNN for Seismology

Fig. Southern California Seismic Network

eocooooooooooo A practical example sem

Goal of the approach:
=
m Learn a parametric model o

[
feIS—)R4
SeHy

Y

m Input: |[V] X d signals recorded by |V| stations and sampled
using P time steps. d: NS, EW, Up-Down components.
m Output: characteristics of events.

34°N
m Loss function:

1 4 N
L= an ;cl=1zj=1 |3’kj —ijl-

m Yy, latitude, longitude, depth, or magnitude of event k. 33N

Graph-related issues

m S is unstructured and evolve over time (lack of data,
temporary stations a vs fixed stations @ ).

32°N
120°W

m The graph is not specified and A is a priori not known.
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Dynamic GNN for Seismology

oeooooooooooo Pipeline [] dxP
x
. . S I
@ Convolutional Encoding hg()l): R3Co s R . \
m Extraction of temporal features (CNN-based encoder): %x V]
xgl](l)[ ] ReLu(b(D _I_Zdl 1 w(l) []](l 1)[ ] )

m x, [n]: value of the i-th feature channel at time index n for station s at layer [.
m Valid output indices: n < m;_; — 4 = temporal dimension shrinks accross layers.

@ Spatial information integration h(gl(ll)l) READ+2)x|v| _, paxv|

o T s O .
[i](l)[ | | dV x|V

(111)
Aggregation Pool: R4Vl — Ra®™ +—d
(I1D) | D
hgam: R4 - R* \
m Extraction of graph-level information: Fia. - Pipel
1J. . FlIpeline.
y = (111) (W(III) (11D) (W(III) n b(m)) n b(III)) g P

x ze R is derived by aggregating the features X € R using Pool(h I(II)D( ).
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Dynamic GNN for Seismology S

ooeoooooooooo Three GNN blocks Fig. : Pipeline,
sub-components. I d X P Xx|V|
@ Spatial information integration hg(ll)l): (@D+2)xv] _, Rd x|V
/" m Concatenating and “mixing” — Edgeless-GNN N 40 x V]
Xgn) _ 02(11) (Wz(ll)al(n) (Wl(m)”(gl) o bgn)) i bgn))’ -

I —
s 2V =x||p,, ps is the geographic position of station s and x{" = hg()l) (Xs) dl
\_ the temporal feature extraction of waveforms (S € R*PxIV]y, d | x|V|

Y,
("m Using a local GCN — Spectral-GNN )

\_

xgm = o(xX;W + ),

-1/2 . ~
jlvjengeow)(DsDj) X, W) or X = o (AXW),

4D
. 1 1 +—
= D;: # of neighbors of v; (fixed graph), A =1+ D 2(A + AT)D"2/2 so that we
obtain D; = ZL(ALJ + Aﬂ)/Z
\ m Ngeo (Vs): Neighborhood of node vg according to the geographic proximity. )

4
( m Using a MPNN — Dynamic-GNN h |
(LI+1) M) (@D @D _

(ILD)
= u , U u .
S Zke{l,z} jlvjeg\fak(vs) k S J S ))

X y y
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Dynamic GNN for Seismology

oooeooooooooo Spatio-Temporal Graph Local Convolution

ST-GC Block (based on MP — |ocal) / \
[ |
A+1) _ D (D (z) 4 ® max Y
X =  max u ,
280 = 1, VX 1y oo i {ngg feig
m U, = X;||ps (ps € R?) allow the model to distinguish nodes
with similar features but different topological roles.
s Asymmetric update Reo — R4": d(D: dimension of the
encoded features; input dim.: 2(d® + 2). )
s V.Y kNN of based on geographi iti : > M Jgeo
beo - geographic positions ||p; — p]||2. 0
m Feature similarity \ /
(+1) _ ) (l) (l) (l)
. ma X )
s, dist ]|V]EN51g(Us) f;‘lg( Xs )
—
s Asymmetric update R%ie - R input dim.: 2d®. ST-GC —
D . 2, : :
n NV, o k-NNwith ||x; —x;||": combine x;’s from distant stations. o S| f
0 embedding f: RE+DEDxIV] _, paDx|v| >
©) 11 v(1) @) .. 11w 0 _ v® 0 Fig. : ST-GC Block and multi-
XXX [ X where X = Xgeo @ Xaist scale embedding.
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Dynamic GNN for Seismology

ooooeooooooooo OQverview

Convolutional encoding (shared)
m 12 convolutional layers (kernel size = 5).
m Max pooling applied every 3 layers (kernel size = 4).

Spatial information integration

m Edgeless-GNN and Spectral-GNN

m 2-layer MLP followed by max-pooling.

m Hidden layer size: 27 = 128 = d(D = 128.

m For (local) GCN, k = 5 spatial neigbors per node.
m Dynamic-GNN

m ST-GC: 2-layer MLPs (one MLP per graph: geometric &
feature-based). ST-GC block is repeated L = 4 times.

m Hidden layer size: 32 per branch.

m k=05,L=4layers = dMW= (L +1)d® =5 x 26 = 320.

Prediction
m 2-layer MLP with a hidden size of 128.
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Fig. : Scheme of
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Applications for seismology

oooooeoooooooo Datasets m 20 yrs (01/01/2000 — 06/30/2019).

- .
Resif (Fran—cz‘ . Resif, g m 3493 events with M; > 2.
o (1) (X 10° km) 1011 events m 72 stations, 3 components.
o8 —— Résif
. — SCSN
: SCSN? (USA)
£ 0.6 36°N ]
§46°N joﬁ
a4°N. o A 0.41 35°N
42°N %0 of P o s BF 0.3
40°N 3/ C 0.2 . i
4°W  0°W  4°E 8°E
Longitude 0.1
3 yrs (01/01/2019 — 12/31/2021). 33°N

|

= 13479 events (12 x 12 deg). P 0 T Ao AR
. Magnitude M,,

m 3435 events with M; > 2. -

m 42 stations, 1 component. 120°W 115°W 118°W 117°W 1le°w

1 Péguegnat et al., doi: 10.1785/0220200392 (2021) Longitude
2 Hutton, Woessner, Hauksson (2010), doi: 10.1785%2F0120090130 (2010)
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Applications for seismology

- 3XPX|V| Px|V|
ooooooeooooooo Performance comparison XeR XeR
- -
Error metrics GNN E £ o (SCSN) E + o (Resifys)
s RMSE (for given y € R) Edgeless- 0.175 + 0.019 0.151 +0.018
m_1gyRrR 1 1 Spectral- _ + 0. , + 0.
E = E2k=1EZ7}3=1 \/'D_Ic'ZjEDk EJ,ZkT_ P . 0.149 + 0.020 0.161 £ 0.020
N . Dynamic- 0.129 £+ 0.013 0.141 £ 0.020
o Egy
Ee . = 0.4 2}
m € = Yj — Vjkr With y;: ground-truth for the j-th event 5 e Best GNN per
in the test set Dy, and y;,,-: predicted value. Dl €My fold: Eyin i
m E,,.: RMSE for fold k and seed r (R = 10 and K = 10). 3000 0.136+0.017 0.3 '
m E,: average RMSE over the R seeds, for each fold.
a I global RMSE. 2000 0.1361+0.016
m Total Varlance 1000 0.148 + 0.018 02 | K — Ana|yst -
1 - _
g% = EZ’,{{:lZf:l(Ekr — E)2. Fig.: € E, o; € boxplots é
m Variance to seed-level variability and that induced by for Emi“'krz min By 0.1 ﬁ % é
differences between test-folds. impact |D| x
m Boxplots of E}, potential outliers and assess the 0.0 —
stability/dispresion of model predictions. Erin [ | > Epjpy [ 00 | EdgeIeSS[-)ynamIC-
June 19th, 2025 40
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Applications for seismology
oooooooeocooooo Variance analysis

Variance decomposition
1 — — 1 - =
0% = Ezllgzl Yro1(Ex — Ex)* + EZII<<=1(EI< - E)>.

2 2
Jopt Odat

m oS, seed-level variability.
m 03, variability induced by differences between test folds.

Main results Edgeless vs Dynamic
m Observations

m o?is primarly driven by ¢f.. as M,, 7.
m 0, N With Dynamic-GNN.

m Explanations

m Architecture: Dynamic-GNN leverages adaptive topology.

m Distribution: More data reduces average RMSE, but
imbalanced M,, distribution = o2 2 for rare (large) events.

m Optimization: seed-dependent variability accounts for 1/3
of o%; mainly affects low-M,, events with weaker feature
signals and higher SNR.
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0.01-
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Applications for seismology
ooooooooecoooo Robustness to input signals

Three strategies

Xso = Xs1 — Xs»

m SO (standard): reference configuration

m Broadband filtering (1-8 Hz): removes LFs below the corner frequency
(~ 0.2 Hz), which are critical for seismic moment estimation.
m Aligned time windows, based on origin time t, of each event.

m S1 (narrowband): filtered waveforms
m Apply a bandpass filter (1-1.5 Hz).

m Removes much of the spectral content related to rupture complexity

(e.g., HF scattering outside the band).

m S2 (random sliding): misaligned windows

= Apply a random shift (102U([—1,1])) to the start time of each window.
m Add station-specific time shifts compare to published works*.

Fig. : Bosplots (RMSE)
for SO, S1 and S2.

0.40

0.35;

Magnitude RMSE
o
N
o

0.15;

0.10;

m Breaks alignment to theoretical arrival times, simulating poor or missing

phase picks (e.g., early warning, low-SNR environments).

*van den Ende & Ampuero (2020), doi:10.1029/2020GL088690
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Applications for seismology
oooooooooeococoo Gains depend on graph and data quality

0.4 : 5

o B SO =3 s1 1 S2 (SCSN) e 7- SO 3 s1 1 S2 (SCSN)
I SO @@ S1 [ S2 (Résif) <4 I SO [ S1 [ S2 (Résif)
n 0.3 N
= X 7
- - S 31
o
$04 W :
s =T =g 5°
(© _ X i x wn
e - JEoEs == +=%E | 51 < x
0.0 : 0+*++@$ A sl
' Edgeless-GNN Dynamic-GNN Edgeless-GNN Dynamic-GNN
Trends ’ Y ’ Y
s Why doesn’t Dynamic-GNN outperform Edgeless-GNN The retained events (M,, > 2.5) are less
on Resif, ; and S2? () sensitive to SNR effects, making GNN
= S2 do not impact localization performance (@) Rl SRl RSt
: _ The Resif, ; network is sparse and uneven,
m A proxy scale can be defined as: ) : - )
. reducing the ability of dynamic graphs to
A= NG D) Z?’:l Z}Cll dgeo (Vi nj(v;)). extract meaningful spatial patterns.
dgeo: geodesic distance to the neighbors n; (v;) The limited number of training events
a 1~ 104 km for Resif, and A ~ 39 km for SCSN. (z1OOIO) _rtnayfn[;)t suppor(‘talt\rlﬁ higher model
m GNN are able to resolve sub-4 spatial differences. complexity of bynamic- '

@ CEA — EDF — INRIA Summer School June 19th, 2025



Applications for seismology

ooooooooooeco Interpretability of graphs
L

Sensitivity indices
m Contribution of node s to the final prediction:
[ssmr - ||vxgl>e||2.
2

Using z = max x; leads to:
S

lSs(L)]z _ Z;_lil 1_w (asz)z.

J
SS(L) acts as a station-wise attribution score, highlighting
which nodes contributed most to the prediction error €.

Layer-Dependent Spatial Attention

m Deeper GNN layers focus on fewer, high-
sensitivity stations V) c V:
v®|/ V| - h.

m Stations cluster near the epicenter, resembling a
learned spatial attention mechanism.
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Applications for seismology

oooooooooooceoco Oversmoothing [1] Oono & Suzuki, arxiv 1905.10947, 2019
[2] Rusch, Bronstein & Mishra, arxiv 2303.10993, 2023

Oversmoothing s
geo
m Deeper GNNs tend to oversmooth, i.e. make node % 10° -/
embeddings indistinguishable across Gy, and Gy;q. c 7
. . . = 1071
m For GCNs with fixed topology and linear propagation, /7 L =
causes the node embeddings to converge towards a low-dim. = 10-2
invariant subspace: dj(XW) < (s1)'dy (X©) [1]. -
()]
(@)}
Dirichlet energy Tr(X"LgymX) [2] g 1072
m Measures local variation of node embeddings (low & = = 10-4
smoothness). For directed graphs: 0 z 10 15 20
2 Message-passing layers
E(XD) = X Xjwsenan [|e ||
o _ Fig. Averaged Dirichlet energies over
o eg.) =xP(ai") Yz _ x}”(d}?ut) Y2 \yith the dimensions defined allgthe ever?ts and +o Expor?ential
as d" = k and d}’“t = #{v;|v; € N (v;)}. decrease is satisfied Which confirms
m This double normalization ensures £ remains well-defined when oversmoothing. Resif, c.

N (v;)’s are defined via attention mechanisms.
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Applications for seismology
ooooooooooooeo Towards deeper GNNs

Concat in @ mitigates oversmoothing

m k = |N(v;)| defines the local receptive field (= 5)

m Stacking multiple layers means that the local neighborhoods are
recursively propagated across layers.
m x and L should be co-tuned to avoid oversmoothing.

m || provides multi-scale agreggation (
into a lower dimensional space

XO -1 X®) 5 z = Pool(XD) € RY.

Fig. Prediction error with
Dynamic-GNN. MAE + ¢ (solid
lines); RMSE (dashed line)

) that maps X&) € RL4

XL

m X© =X || P (X: output of @) inspired by Positional Encodings.
m || Plays a similar role to multi-head attention in Graph Transformers:
aggregating multi-scale relational patterns into a unified representation

m || can be applied to large classes of GNN.

m For Edgeless*-GNN and “poor” datasets (Resif, ;) — performance.
m Preserve express. for GCNs (Chen et al., arxiv 2007.02133, 2020).
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RMSE 0.175 + 0.019
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RMSE  0.132£0015 |, . |
MAE 0.101 +0013 el *l
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Applications for seismology
oooooooooooooce What have we learned?

Dynamic Graphs: Physics-aware and interpretable

m The Dynamic-GNN learns adaptive station-to-station connectivity,
reflecting underlying physical processes like wavefront propagation.

m Sensitivity scores reveal how information is routed, resembling a spatial
attention mechanism focusing on informative stations near the epicenter.

Concatenation mitigates oversmoothing

m Aggregating intermediate outputs provides multi-scale information and
preserves node-wise diversity (conceptually aligned with multi-head
attention in Transformers, where different attention heads specialize in
different relational patterns).

Robustness in low-data settings

m The Dynamic-GNN adapts its graph to the signal structure, improving
generalization on small or imbalanced datasets (Resif,.5 vs SCSN).

m Fixed-topology models struggle in such settings, as they cannot exploit data-
specific spatial correlations.
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Open questions

®0

Over-SMoothing (OSM) _ -
s OSM is not always harmful .

m OSM is not systematically detrimental to performance — it can
help classification if it aligns with the task objective (Fig.). j - . 9z

m Keriven et al. (2022) suggest: some OSM is desired, especially 4
in homophilic graphs. : e

m OSM happens non-uniformly

m Smoothing can occur faster in some embedding subspaces than
others. If labels are aligned with these slow-smoothing
subspaces — performance improves.

.
,

m This leads to the idea of task-oriented smoothing.

m OSM analysis in real-world GNNs

m Real GNNs may not suffer as much from OSM, thanks to
residual connections, gated or relational variants, etc.

Fig. Evolution of node embeddings

from a GCN under increasing

message-passing depth, showing class

m There is a need to extend OSM analysis to real-world separation collapse as smoothing
architectures and not idealized deep GCNs. Increases.
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= Fig. Rewiring the graph improves
Open questions comnectivity by reduing
oe bottlenecks. The transformation

R(G) increases 4,, lowers

: resistance R.,;, and facilitates
Over-SQuashing (OSQ) long-range message passing.

m Compression vs. Bottlenecks

m OSQ arises from exponential compression of messages from many paths
through a limited number of edges (bottlenecks).

m Classical metrics (1,, Ri,¢) Often used, but Structural metrics may fail to capture
task-relevant information flow, especially when node labels or signals are
misaligned with structural bottlenecks.

m Bottleneck metrics vs. task sensitivity
m Metrics like curvature, resistance distance identify structural bottlenecks.

m But they might not align with what the network is trying to learn — There’s a gap
between structural measures and task relevance.

m Spectral perspective

m Spectral decomposition offers a way to measure how label information
is distributed across frequency modes:

m Homophilic labels: aligned with low-frequency modes.
m Heterophilic labels: encoded in high-frequency components.

@ CEA — EDF — INRIA Summer School June 19th, 2025 49



Any questions
now or later?

ecole
normale

supérieure universite

paris—saclay

PARIS-SACLAY

Christophe.millet@cea.fr

)

CENTRE
BORELLI



mailto:Christophe.millet@cea.fr

References

=Abboud, R., Dimitrov, R., & Ceylan, I. I. (2022, December). Shortest path networks for graph property prediction.
In Learning on Graphs Conference (pp. 5-1). PMLR.

=Abu-El-Haija, Sami, et al. "Mixhop: Higher-order graph convolutional architectures via sparsified neighborhood
mixing." international conference on machine learning. PMLR, 20109.

=Alev, V. L., Anari, N., Lau, L. C., & Gharan, S. O. (2018). Graph clustering using effective resistance
http://drops.dagstuhl.de/opus/volltexte/2018/8369.

=Alon, U., & Yahav, E. (2020). On the bottleneck of graph neural networks and its practical implications. In ICLR
2021.

=Arnaiz-Rodriguez, A., Begga, A., Escolano, F., & Oliver, N. (2022). Diffwire: Inductive graph rewiring via the Lovasz
bound. In the First Learning on graphs (LoG) Conference 2022.

=Arnaiz-Rodriguez, A., Curto, G., & Oliver, N. (2024). Structural Group Unfairness: Measurement and Mitigation by
means of the Effective Resistance. In TrustLOG Workshop at WWW 2024.

=Banerjee, P. K., Karhadkar, K., Wang, Y. G., Alon, U., & Montufar, G. (2022, September). Oversquashing in gnns
through the lens of information contraction and graph expansion. In 2022 58th Annual Allerton Conference on
Communication, Control, and Computing (Allerton) (pp. 1-8). IEEE.

=Chamberlain, B., Rowbottom, J., Eynard, D., Di Giovanni, F., Dong, X., & Bronstein, M. (2021). Beltrami flow and
neural diffusion on graphs. Advances in Neural Information Processing Systems, 34, 1594-1609.

=Bi, W., Du, L., Fu, Q., Wang, Y., Han, S., & Zhang, D. (2022). Make heterophily graphs better fit gnn: A graph
rewiring approach. arXiv preprint arXiv:2209.08264.

=Black, M., Wan, Z., Nayyeri, A., & Wang, Y. (2023, July). Understanding oversquashing in gnns through the lens of
effective resistance. In International Conference on Machine Learning (pp. 2528-2547). PMLR.

52



References

=Bodnar, C., Di Giovanni, F., Chamberlain, B., Lio, P., & Bronstein, M. (2022). Neural sheaf diffusion: A topological
perspective on heterophily and oversmoothing in gnns. Advances in Neural Information Processing Systems, 35,
18527-18541.

=Bruel-Gabrielsson, R., Yurochkin, M., & Solomon, J. (2022). Rewiring with positional encodings for graph neural
networks. TMLR 2023

=Buchnik, E., & Cohen, E. (2018, June). Bootstrapped graph diffusions: Exposing the power of nonlinearity. In
Abstracts of the 2018 ACM International Conference on Measurement and Modeling of Computer Systems (pp. 8-
10).

=Cai, C., & Wang, Y. (2020). A note on over-smoothing for graph neural networks. In ICML 2020.

=Cai, C.,Hy, T. S, Yu, R., &Wang, Y. (2023, July). On the connection between mpnn and graph transformer. In
International Conference on Machine Learning (pp. 3408-3430). PMLR.

=Chamberlain, B., Rowbottom, J., Gorinova, M. |., Bronstein, M., Webb, S., & Rossi, E. (2021, July). Grand: Graph
neural diffusion. In International conference on machine learning (pp. 1407-1418). PMLR.

=Chamberlain, B., Rowbottom, J., Eynard, D., Di Giovanni, F., Dong, X., & Bronstein, M. (2021b). Beltrami flow and
neural diffusion on graphs. Advances in Neural Information Processing Systems, 34, 1594-1609.

=Chen, M., Wei, Z., Huang, Z., Ding, B., & Li, Y. (2020, November). Simple and deep graph convolutional networks.

In International conference on machine learning (pp. 1725-1735). PMLR.

=Chen, T., Zhou, K., Duan, K., Zheng, W., Wang, P., Hu, X., & Wang, Z. (2022). Bag of tricks for training deeper
graph neural networks: A comprehensive benchmark study. IEEE TPAMI.

=Chung, F. R. (1997). Spectral graph theory (Vol. 92). American Mathematical Soc..

=Devriendt, K., & Lambiotte, R. (2022). Discrete curvature on graphs from the effective resistance. Journal of
Physics: Complexity, 3(2), 025008.

53



References

=Di Giovanni, F., Giusti, L., Barbero, F., Luise, G., Lio, P., & Bronstein, M. M. (2023, July). On over-squashing in
message passing neural networks: The impact of width, depth, and topology. ICML

=Di Giovanni, F., Rowbottom, J., Chamberlain, B. P., Markovich, T., & Bronstein, M. M. (2023). Understanding
convolution on graphs via energies. In TLMR.

=Di Giovanni, F., Rusch, T. K., Bronstein, M. M., Deac, A., Lackenby, M., Mishra, S., & Veli¢kovi¢, P. (2024). How
does over-squashing affect the power of GNNs?. TMLR.

=Dwivedi, V. P., Rampasek, L., Galkin, M., Parviz, A., Wolf, G., Luu, A. T., & Beaini, D. (2022). Long range graph
benchmark. Advances in Neural Information Processing Systems, 35, 22326-22340.

=Eliasof, Moshe, Eldad Haber, and Eran Treister. "Pde-gcn: Novel architectures for graph neural networks motivated
by partial differential equations." Advances in neural information processing systems 34 (2021): 3836-3849.
=Errica, F., Christiansen, H., Zaverkin, V., Maruyama, T., Niepert, M., & Alesiani, F. (2024). Adaptive Message
Passing: A General Framework to Mitigate Oversmoothing, Oversquashing, and Underreaching. In JMLR 2024
=Fesser, L., & Weber, M. (2024, April). Mitigating over-smoothing and over-squashing using augmentations of
Forman-Ricci curvature. In Learning on Graphs Conference (pp. 19-1). PMLR.

=Gasteiger, J., Weil3enberger, S., & Gunnemann, S. (2019). Diffusion improves graph learning. Advances in neural
information processing systems, 32.

=Giraldo, J. H., Skianis, K., Bouwmans, T., & Malliaros, F. D. (2023, October). On the trade-off between over-
smoothing and over-squashing in deep graph neural networks. In ICKM.

=Gutteridge, B., Dong, X., Bronstein, M. M., & Di Giovanni, F. (2023, July). Drew: Dynamically rewired message
passing with delay. In International Conference on Machine Learning (pp. 12252-12267). PMLR.

54



References

=Hamilton, W. L. (2020). Graph representation learning. Morgan & Claypool Publishers.

=Hasanzadeh, A., Hajiramezanali, E., Boluki, S., Zhou, M., Duffield, N., Narayanan, K., & Qian, X. (2020, November).
Bayesian graph neural networks with adaptive connection sampling. In ICML 2022.

=Huang, K., Wang, Y. G., & Li, M. (2024). How Universal Polynomial Bases Enhance Spectral Graph Neural Networks:
Heterophily, Over-smoothing, and Over-squashing. arXiv preprint arXiv:2405.12474.

=Jamadandi, Adarsh, Celia Rubio-Madrigal, and Rebekka Burkholz. "Spectral Graph Pruning Against Over-Squashing
and Over-Smoothing." arXiv preprint arXiv:2404.04612 (2024).

=Karhadkar, K., Banerjee, P. K., & Montufar, G. (2022). FoSR: First-order spectral rewiring for addressing
oversquashing in GNNs. In ICLR 2023

=Jiang, W., Liu, H., & Xiong, H. (2023). Survey on Trustworthy Graph Neural Networks: From A Causal Perspective.
arXiv preprint arXiv:2312.12477.

=Keriven, N. Not too little, not too much: a theoretical analysis of graph (over) smoothing. NeurlPS 2022.

=Kondor, R. I., & Lafferty, J. (2002, July). Diffusion kernels on graphs and other discrete structures. In Proceedings of
the 19th international conference on machine learning (Vol. 2002, pp. 315-322).

=Li, Q., Han, Z., & Wu, X. M. (2018, April). Deeper insights into graph convolutional networks for semi-supervised
learning. In Proceedings of the AAAI conference on artificial intelligence (Vol. 32, No. 1).

=Li, G., Muller, M., Thabet, A., & Ghanem, B. (2019). Deepgcns: Can gcns go as deep as cnns?. In Proceedings of the
IEEE/CVF international conference on computer vision (pp. 9267-9276).

=Liu, M., Gao, H., & Ji, S. (2020, August). Towards deeper graph neural networks. In Proceedings of the 26th ACM
SIGKDD international conference on knowledge discovery & data mining (pp. 338-348).

55



References

=Liu, Y., Zhou, C., Pan, S., Wu, J., Li, Z., Chen, H., & Zhang, P. (2023, April). Curvdrop: Aricci curvature based
approach to prevent graph neural networks from over-smoothing and over-squashing. In WWW.

=Liu, Y., Zheng, Y., Zhang, D., Lee, V. C., & Pan, S. (2023b, June). Beyond smoothing: Unsupervised graph
representation learning with edge heterophily discriminating. AAAI.

=Lim, D., et al. "New benchmarks for learning on non-homophilous graphs®. In WWW Workshop on GLB, 2021.
=l ovasz, L. (1993). Random walks on graphs. Combinatorics, Paul erdos is eighty, 2(1-46), 4.

=l _uan, S., Hua, C., Lu, Q., Zhu, J., Zhao, M., Zhang, S., ... & Precup, D. (2022). Reuvisiting heterophily for graph
neural networks. Advances in neural information processing systems, 35, 1362-1375.

=Luan, S. et al (2024). The Heterophilic Graph Learning Handbook: Benchmarks, Models, Theoretical Analysis,
Applications and Challenges. Arxiv 2407.09618

=Ma, Y., Liu, X., Shah, N., & Tang, J. (2022). Is homophily a necessity for graph neural networks?. ICLR 2022.

=Maskey, S., Paolino, R., Bacho, A., & Kutyniok, G. (2024). A fractional graph laplacian approach to oversmoothing.
Advances in Neural Information Processing Systems, 36.

=Newman, M. “Assortative mixing in networks”. Phys. Rev. Lett., 89, 2002.

=Nguyen, K., Hieu, N. M., Nguyen, V. D., Ho, N., Osher, S., & Nguyen, T. M. (2023, July). Revisiting over-smoothing
and over-squashing using ollivier-ricci curvature. In ICML 2023.

=0ono, K., & Suzuki, T. (2019). Graph neural networks exponentially lose expressive power for node classification. In
ICLR 2020.

=Pei, H. et al. “Geom-GCN: Geometric GCNs”. In ICLR, 2019.

56



References

=Pham, T., Tran, T., Dam, H., & Venkatesh, S. (2017). Graph classification via deep learning with virtual nodes. arXiv
preprint arXiv:1708.04357.

=Qiu, H., & Hancock, E. R. (2006). Graph embedding using commute time. In Structural, Syntactic, and Statistical
Pattern Recognition: Joint IAPR International Workshops, SSPR 2006 and SPR 2006,

=Qian, Y., Expert, P., Rieu, T., Panzarasa, P., & Barahona, M. (2021). Quantifying the alignment of graph and features in
deep learning. IEEE TNNLS

=Rong, Y., Huang, W., Xu, T., & Huang, J. (2020). Dropedge: Towards deep graph convolutional networks on node
classification. In ICLR 2020.

=Rusch, T. K., Bronstein, M. M., & Mishra, S. (2023). A survey on oversmoothing in graph neural networks. arXiv
preprint arXiv:2303.10993.

=Rusch, T. K., Chamberlain, B., Rowbottom, J., Mishra, S., & Bronstein, M. (2022, June). Graph-coupled oscillator
networks. In International Conference on Machine Learning (pp. 18888-18909). PMLR.

=Southern, J., Di Giovanni, F., Bronstein, M., & Lutzeyer, J. F. (2024). Understanding Virtual Nodes: Oversmoothing,
Oversquashing, and Node Heterogeneity. arXiv preprint arxXiv:2405.13526.

=Shao, Z., Shi, D., Han, A., Guo, Y., Zhao, Q., & Gao, J. (2023). Unifying over-smoothing and over-squashing in graph
neural networks: A physics informed approach and beyond. arXiv preprint arXiv:2309.02769.

=Spielman D. (2018). Spectral Graph Theory, Lecture 10: Random Walks on Graphs. Lecture at Yale
https://www.cs.yale.edu/homes/spielman/561/lect10-18.pdf

=Topping, J., Di Giovanni, F., Chamberlain, B. P., Dong, X., & Bronstein, M. M. (2021). Understanding over-squashing
and bottlenecks on graphs via curvature. ICLR 2022.

=VeliCkovi¢, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). Graph attention networks.
=Xhonneux, L. P.,, Qu, M., & Tang, J. (2020, November). Continuous graph neural networks. In International conference -
on machine learning (pp. 10432-10441). PMLR.



https://www.cs.yale.edu/homes/spielman/561/lect10-18.pdf

References

=Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K. I., & Jegelka, S. (2018, July). Representation learning on graphs
with jumping knowledge networks. In International conference on machine learning (pp. 5453-5462). PMLR.

=Zheng, C., Zong, B., Cheng, W., Song, D., Ni, J., Yu, W., ... & Wang, W. (2020, November). Robust graph
representation learning via neural sparsification. In International Conference on Machine Learning (pp. 11458-11468).
PMLR.

=Zheng, Y., Luan, S., & Chen, L. (2024). What Is Missing In Homophily? Disentangling Graph Homophily For Graph
Neural Networks. arXiv preprint arXiv:2406.18854.

=Zhao, L., & Akoglu, L. (2020). Pairnorm: Tackling oversmoothing in gnns. In ICLR 2020.

=Zhao, J., Dong, Y., Tang, J., Ding, M., & Wang, K. (2021). Generalizing graph convolutional networks via heat kernel.

=Zhou, K., Huang, X., Li, Y., Zha, D., Chen, R., & Hu, X. (2020). Towards deeper graph neural networks with
differentiable group normalization. Advances in neural information processing systems, 33, 4917-4928.

=Zhou, K., Huang, X., Zha, D., Chen, R., Li, L., Choi, S. H., & Hu, X. (2021). Dirichlet energy constrained learning for
deep graph neural networks. Advances in Neural Information Processing Systems, 34, 21834-21846.

=Zhou, K., Dong, Y., Wang, K., Lee, W. S., Hooi, B., Xu, H., & Feng, J. (2021b, October). Understanding and resolving
performance degradation in deep graph convolutional networks. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Management (pp. 2728-2737).

=Zhu, J., et al. “Beyond homophily in graph neural networks: Current limitations and effective designs”. in NeurIPS, 2020

=Zhu, Y., Xu, W., Zhang, J., Du, Y., Zhang, J., Liu, Q., ... & Wu, S. (2021). A survey on graph structure learning: Progress
and opportunities. arXiv preprint arXiv:2103.03036.

=Zhu, Y., Du, Y., Wang, Y., Xu, Y., Zhang, J., Liu, Q., & Wu, S. (2022, December). A survey on deep graph generation:
Methods and applications. In Learning on Graphs Conference (pp. 47-1). PMLR.

58



