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Motivation
●○○○ Graphs are everywhere

■ Graphs = vertices + edges

■ Universal representation for structured data.

■ Social networks (people, messages), biology (atoms/proteins, 

chemical bonds), sensor networks (stations, geodesic), 

recommendation (users/items, ratings), transportation (cities, 

roads/flights), etc.

■ Graphs help us ask — and sometimes answer — fundamental 

questions about structure and interaction

■ What is the structure of a network ? Are there parts? (clustering)

■ Do the parts look the same? (similarity, isomorphism)

■ How can we model a set of graphs? (models)
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Motivation
○●○○ When graphs are ignored

𝕏

About the event

■ Accidental explosion (Beirut, Aug. 4, 2020).

■ 2.7 kt of Ammonium Nitrate (NH4NO3).

Global to local graphs

■ Recorded by the IMS and regional networks (INSN, 
Israel National Seismic Network). 

■ Infrasound stations: ∼ 103 km.
■ Seismic stations (▲▲▲): ∼ 102 km.

■ IS + seismic at 102 km (▲).

■ Publicly available videos (∼ 102 m). 

Magnitude/yield? 

■ Many magnitude estimates from empirical laws 
and various tech. ⇒ 𝑊 ≃ 0.13 − 2 kt TNT [*].

■ Solving the inverse wave propagation problem. ?𝑀𝑊

𝜆 ∼ 101 - 106 m

𝑁 ∼ 2 - 102

CEA – EDF – INRIA Summer School June 19th, 2025
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Yield estimates (Beirut, 2020)

■ Using Green’s functions of the 

wave equation (SEM3D) + signals.

min
𝑊

σ𝑠=1
𝑁 𝐬𝑠 − ො𝐬𝑠 ,

■ 𝐬𝑠 = 𝐬0 𝑊 ∗𝑡 𝐆; 𝑠0: source model.

■ Ƹ𝑠, 𝑠: recorded and simulated signals.

■ Using a compressible flow solver

and videos of shock dynamics.

300 340260

InfraSound (IS)

Wind 

(m.s-1)

+
SEM3D:

1 day (104 cores) 

for 8 min.

5

PDF

HERA3D:

10h (105 cores) 

for 10 s.

Motivation
○○●○ Does simulation help?

𝐬 𝑠
−
ො 𝐬 𝑠
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Motivation
○○○● GraphCast* (2022)

An example of GNN

■ 36.7 106 parameters.

■ Multi-mesh derived from 

icosahedral meshes, from 

M0 to M6 (40962 nodes).

■ Predicts ∼ 100𝑠 of weather 

variables over 10 days at 

0.25° resolution, in < 1 min.

❶Encoding/decoding with a 

single layer.

❷MPNN: 𝐿 = 16 layers to 

propagate information from 

local to global scale.

* arXiv 2212.12794

6

❶ ❷ ❶

❷

Input weather state Roll out a forecast
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Preliminaries
Laplacians, GFT, convolution, spectral and 
spatial approaches
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Preliminaries
●○○○○○○○ Basic definitions

■ Basic definitions

■ Graph: 𝐺 = 𝑉, 𝐸 , 𝑉: set of nodes (vertices); 𝐸 ⊂ 𝑉 × 𝑉: set of edges.

■ Edges can be directed or undirected.

■ A graph is connected when, for any two nodes 𝑖 and 𝑗, there exists a 

sequence of edges forming a path from 𝑖 to 𝑗.

■ Adjacency and degree matrices 𝐀,𝐃 ∈ ℝ 𝑉 ×|𝑉|

𝐴𝑖𝑗 = ቐ
1, 𝑣𝑖 , 𝑣𝑗 ∈ 𝐸

0, 𝑣𝑖 , 𝑣𝑗 ∉ 𝐸
and 𝐷𝑖 = σ𝑗𝐴𝑖𝑗.

■ For directed graphs, we have in-degree 𝐷𝑖
in and out-degree 𝐷𝑖

out.

■ Learning tasks on graphs 𝑓: 𝐺, 𝐗 → 𝑌, 𝐗 ∈ ℝ 𝑉 ×𝐶 (𝐶: feature dim.).

Node-level app. (graph clustering, classification of web pages).

Edge-level app. (traffic prediction, recommendation systems).

Graph-level app. (molecule classification, point cloud analysis).

1

32

𝐀 =
0 1 0
1 0 1
0 1 0

𝐃 =
1 0 0
0 2 0
0 0 1

1 2

𝐗 =
1 2
2 3
1 0

2 3 1 0
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Preliminaries
○●○○○○○○ Combinatorial Laplacian

■ Definition and key properties

■ Unnormalized Laplacian:

𝐋 = 𝐃 − 𝐀,

For 𝐗 ∈ ℝ|𝑉|, 𝐋𝐗 𝑖 = σ𝑗 𝐴𝑖𝑗(𝑥𝑖 − 𝑥𝑗).

■ Symmetric, positive semi-definite:

𝐗T𝐋𝐗 =
1

2
σ𝑖σ𝑗𝐴𝑖𝑗 𝑥𝑖 − 𝑥𝑗

2
≥ 0.

𝐗T𝐋𝐗 = 0 (total variation = 0) characterizes signals with zero 

variation (see ❷) across the graph, i.e. 𝑥𝑖 = 𝑥𝑗 for any (𝑖, 𝑗).

■ Diagonalization: 𝐋 = 𝐔𝚲𝐔∗, with 𝚲 = diag 𝜆1, … , 𝜆 𝑉 , 𝜆𝑖 ∈ ℝ.

𝐋𝟏 = 𝟎 ⇒ multiplicity 𝑚𝑔 of 𝜆 = 0 (dim(ker 𝐋)) equals the number 

of connected components (see ❶).

An intuitive approach: 𝐔 = nodes × spectral modes

1

2

3

5
4

6

L =
𝐐 𝟎
𝟎 𝐐

; 𝐐 =
1 −1 0
−1 2 −1
0 −1 1

𝜒𝐐 𝜆 = 𝜆 𝜆 − 1 𝜆 − 3

⇒ 𝑚𝑔 0 = 𝟐

𝐗T𝐋𝐗 =
1

2
× 4

𝐺1

+
1

2
× 16

𝐺2

= 10

0

1

2

1

3

1

❶

❷
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Preliminaries
○○●○○○○○ Other definitions

■ Symmetric normalized Laplacian

■ 𝐋 gives more weight to high-degree nodes (hubs) in the energy 

computation → topological bias.

■ Def.: 𝐋sym = 𝐃−1/2𝐋𝐃−1/2 = 𝐈 − 𝐃−1/2𝐀𝐃−1/2.

■ Counteract topol. bias by scaling sender and receiver contributions.

■ 𝜎 𝐋 ⊂ 0,max
i
𝐷𝑖 ⇒ 𝜎 𝐋sym ⊆ [0,2], i.e. 𝜆max ≤ 2.

■ Applications: spectral filtering, GCNs, Laplacian Encodings, ...

■ Random walk (rw) Laplacian

■ Def.: 𝐋rw = 𝐃−1𝐋 = 𝐈 − 𝐃−1𝐀.

■ Normalizes only the sender, consistent with a rw’s view of the graph (each 

node distributes its information over its neighbors) ⇒ 𝜎 𝐋𝑟𝑤 ⊆ 0,2 .

■ Asym. operator that models directional diffusion, where information flows 

from 𝑣𝑖 to its neighbors 𝑣𝑗 with a Markov transition matrix 𝐏 = 𝐃−1𝐀.

■ Applications: diffusion models, APPNP, Personalized PageRank, ...

Fig. Spectral and probabilistic 

interpretations of Laplacian for 

a small directed graph. Rand. 

walker located at 𝑣𝑖 moves to 

v𝑗 with 𝑃𝑖𝑗 = Pr(𝑖 → 𝑗).

𝑖

3

2

1

𝐋sym =
1

2

2 −1 0

−1 2 0
0 0 0

𝐋rw =
1

2

2 −1 −1
−2 2 0
0 0 0

𝜎 = 0,1 ± 1/ 2

𝑃12 =
1

2

𝑃21 = 1

𝑃13 =
1

2

𝑃31 = 0

𝐔+

𝐔0

𝐔−
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Preliminaries
○○○●○○○○ A simple example (1/2)

■ A (undirected) circular graph 𝐺 = (𝑉, 𝐸)

■ Each 𝑣𝑖 is connected to 𝑣𝑖+1 and 𝑣𝑖−1 and

𝐸 = {(𝑖, 𝑖 + 1 mod 𝑉 )}.

■ 𝐃 = 2𝐈 (each node is connected to 2 nodes), 𝐀 = 𝐉 + 𝐉𝑁−1, 

where 𝐉: circular shift matrix of order 𝑁 = 𝑉 , i.e.

𝐽𝑖𝑗 = 𝛿𝑖, 𝑗+1 mod |𝑉|.

■ For 𝑁 = 4:

𝐉 =

0 1
0 0

0 0
1 0

0 0
1 0

0 1
0 0

and 𝐉𝑁 = 𝐈.

■ Use in energy-based models

■ Circular graphs are used in energy-based models such as 

Convolutional or Temporal Restricted Boltzmann Machines.

■ These architectures leverage circular connectivity to 

implement shared filters and translation invariance.

Fig. : Action of 𝐀 on a circular graph. The 

operation aggregates forward and backward

shifts of a signal, yielding a discrete circular

convolution with kernel [1 0 1] and reflecting

the graph’s rotational invariance..

𝐉𝐗

𝐉𝑁−1𝐗

𝐀𝐗 4 = 𝑥3 + 𝑥5
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Preliminaries
○○○○●○○○ A simple example (2/2)

■ Spectral properties of the circular graph

■ Since eigenvalues of 𝐉 are the 𝑁-th roots of unity (𝑒2𝑖𝜋𝑘/𝑁), the 

eigenpairs of 𝐋 are (𝐋𝐔𝑘 = 𝜆𝑘𝐔𝑘):

𝜆𝑘 = 2 1 − cos(2𝑘𝜋/𝑁) ∈ ℝ,

𝐔𝑘 𝑗 =
1

𝑁
exp

2𝑘𝜋𝑖𝑗

𝑁
.

■ Each 𝐔𝑘 ∈ ℂ|𝑉| (𝑘 = 0, … , 𝑁 − 1) represents a harmonic mode 

over 𝐺 and 𝜆𝑘 ∈ ℝ measures how much the mode oscillates.

■ All 𝜆𝑘 (𝑘 ≠ 0, 𝑁/2) appear in conjugate pairs, hence multiplicity 2 in 

the real spectrum (related to the graph’s rotational symmetry).

■ Signal reconstruction, for 𝐗 ∈ ℝ|𝑉|:

𝐗 = σ𝑘=0
𝑁−1 𝑋𝑘𝐔𝑘

𝐔X

with 𝑋𝑘 = 𝐔𝑘
∗𝐗,

Using 𝐔 = 𝐔1⋯𝐔 𝑉 gives: 𝐗 = 𝐔∗𝐗.

 𝐗 captures the signal's variation at different graph frequencies.

𝑘 = 0 𝑘 = 1

𝑘 = 2 𝑘 = 3

Fig. : Frequency modes for a circular 

graph with 8 nodes.

+

-

CEA – EDF – INRIA Summer School June 19th, 2025
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Preliminaries
○○○○○●○○ GFT and convolution

■ Definition of the Graph Fourier Transform (GFT)

■ GFT allows to express 𝐗 ∈ ℝ|𝑉| in terms of modes on the graph:

GFT: 𝐗 = 𝐔∗𝐗 and iGFT: 𝐗 = 𝐔𝐗.

■ Total variation: or 𝐗T𝐋𝐗 = σ𝑘=0
𝑁−1 𝜆𝑘 𝑋𝑘

2
.

■ Parseval’s identity: 𝐗T𝐗 = 𝐗∗𝐗 = σ𝑘=0
𝑁−1 𝑋𝑘

2
.

■ Convolution on a graph 𝑮: 

■ No abelian group structure: unlike ℝ𝑛 or ℤ𝑛 a general graph lacks 

translation invariance  no canonical convolution theorem. 

■ Convolution between 𝐟 ∈ ℝ|𝑉| and 𝐠 ∈ ℝ|𝑉|

𝐟 ∗𝐺 𝐠 = 𝐔( 𝐟 ⨀ෝ𝐠

diag ො𝐠 መ𝐟

) ⇒ 𝐟 ∗𝐺 𝐠 = 𝐔diag(ො𝐠)𝐔∗𝐟.

■ Spectral filtering: we reinterpret ො𝐠 as the sampling of a function 

on the spectrum, i.e. ො𝑔𝑘 = ℎ 𝜆𝑘 ⇒ 𝐟 ∗𝐺 𝐠 = 𝐔ℎ(𝚲)𝐔∗𝐟.

𝐟 =

1
0
⋮
0

𝐟 ∗𝐺 𝐠

13

Fig. : Graph convolution 

with a heat kernel  

ො𝑔𝑘 = 𝑒−𝜏𝜆𝑘 and 𝜏 = 1.0.

CEA – EDF – INRIA Summer School June 19th, 2025
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Preliminaries
○○○○○○●○ Limitations: cospectrality

Spectral graph convolution

■ Requires eigendecomposition of the graph Laplacian:

𝐟 ∗𝐺 𝐠 = 𝐔ℎ 𝚲 𝐔∗𝐟.

 Impractical for large or changing graphs.

■ High computational cost: requires full eigendecomposition of the 

Laplacian 𝑂 𝑉 3 → Lapack + machine-specific optimisations or 

Lanczos method for sparse networks.

■ Graph-specific basis: eigenvectors 𝐔 depend on graph topology ⇒
not transferable across graphs.

■ Incompatible with dynamic graphs: any change in topology alters 

𝜎(𝐀); same 𝜎(𝐀) does no imply same graph  cospectrality.

■ No locality: spectral filters are global by construction — they blend all 

node information through 𝐔.

14

Fig. : Fraction of non-isomorphic tree 

(connected and acyclic) pairs that share 

the same 𝜎, as a function of graph size, for 

different matrix representations [1].

[1] Wilson & Zhu, Pattern Recognition, 2008.

𝐀

𝐋

𝐋sym

𝐈 + 𝐀

|𝑉|

𝜎 𝐀1 = 𝜎(𝐀2)
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■ Polynomial approximation and locality

■ ℎ can be approximated by a polynomial, leading to localized filters:

ℎ 𝜆 ≃ σ𝑘=0
𝐾 𝜃𝑘𝜆

𝑘 ⇒ 𝐟 ∗𝐺 𝐠 = σ𝑘=0
𝐾 𝜃𝑘𝐋

𝑘𝐟,

where 𝐋𝑘 captures information from the 𝑘-hop neighborhood.

But this is still fixed (non-learnable structure, no adaptation to the task).

■ Idea: replace global spectral filtering with local spatial message passing: information is propagated 

locally via learnable operations — a key idea behind Message Passing Neural Networks.

Preliminaries
○○○○○○○● From spectral to spatial theory

15

𝐟 ∈ ℝ15

❶ 𝐋𝐟 ❷ 𝐋𝟐𝐟 ❸ 𝐋𝟑𝐟

Fig. : Graph diffusion 

under powers of the 

Laplacian, starting from a 

Dirac signal at node 2

CEA – EDF – INRIA Summer School June 19th, 2025
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Graph Neural Networks
MPNN, GCN, over-smoothing/squashing, 
expressiveness, GAT, Graph Transformers

16

2
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■ Spatial vs spectral

■ MPN (❶): feature vector at each node is updated using 

messages from neighbors.

■ GCN (❷): each signal channel is transformed using graph 

convolution.

17

Graph neural networks
●○○○○○○○○○ GNN layer

■ GNN layer

■ The basic idea is to update the state of each node through 

embedding in a 𝐶𝑘+1-dimensional space at each GNN layer:

ℝ 𝑉 ×𝐶𝑘

𝐗(𝑘) layer 𝑘

ℝ 𝑉 ×𝐶𝑘+1

𝐗(𝑘+1)

■ 𝐱𝑗
(𝑘)

∈ ℝ𝐶𝑘: denotes the feature vector at node 𝑗 (i.e., the 𝑗-th row of 𝐗(𝑘)).

■ 𝐱[𝑖](𝑘) ∈ ℝ|𝑉|: denotes the 𝑖-th channel of the graph signal, i.e., the 𝑖-th

column of 𝐗(𝑘).

𝐗 =

𝑥11
𝑥21

𝑥12
𝑥22

𝑥31
𝑥41

𝑥32
𝑥42

𝑥21
(𝑘)

𝑥22
(𝑘)

𝐱1

𝐱[1] 𝑥21
(𝑘+1)

𝑥22
(𝑘+1)

𝑥23
(𝑘+1)

𝐀(𝑘)

𝐀(𝑘+1)

𝑥11
(𝑘)

𝑥12
(𝑘)

𝑥11
(𝑘+1)

𝑥12
(𝑘+1)

𝑥13
(𝑘+1)

𝑥31
(𝑘)

𝑥32
(𝑘)

𝑥31
(𝑘+1)

𝑥32
(𝑘+1)

𝐱[𝑖](𝑘)

𝐱[𝑖](𝑘+1)
↦

❷

CEA – EDF – INRIA Summer School June 19th, 2025
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𝑘

𝐱𝑗
𝑘+1

↦
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Graph neural networks
○●○○○○○○○○ Message Passing Network (❶)

■ AGGregate-UPdate operation

■ The MP framework defines a GNN layer as:

𝐡𝑗
(𝑘)

= AGG 𝑘 ({𝐱𝑖
𝑘
|𝑣𝑖 ∈ 𝒩(𝑣𝑗)}),

𝐱𝑗
(𝑘+1)

= UP(𝑘) 𝐱𝑗
𝑘
, 𝐡𝑗

(𝑘)
.

■ The AGGregate step can be either a fixed permutation-invariant 

operation (e.g., Σ𝑗, avg, mean) or a learnable function.

■ The UPdate step refines the aggregated message by combining it 

with the node's current state, allowing gating mechanisms (GRU) 

to control information flow.

■ By adding self-loops in the graph:

𝐱𝑗
(𝑘+1)

= 𝜎( ⊕
𝑖|𝑣𝑖∈𝒩 𝑣𝑗

𝑓 𝐱𝑖
𝑘
, 𝐱𝑗

𝑘
; 𝛉 𝑘 )

■ 𝜎: non-linear activation and 𝛉(𝑘) are trainable parameters.

■ ⊕ is a symmetric operator: σ, avg or max.

𝐱𝑗1
(𝑘)

𝑣𝑗2

❶ AGG

❷ UPDATE

𝐱𝑗2
(𝑘)

𝐱𝑗3
(𝑘)

𝑣𝑗1

𝑣𝑗3

𝑣𝑗

𝐡𝑗
(𝑘)

𝐡𝑗
𝑘
, 𝐱j

(𝑘)

𝐱𝑗
𝑘+1

CEA – EDF – INRIA Summer School June 19th, 2025

Fig. : Aggregation 

and update 

operations.

Google Research Blog. 2024

https://research.google/blog/graph-neural-networks-in-tensorflow/


Disposition : Titre et contenu

19

Graph neural networks
○○●○○○○○○○ Aggregate, Update and Pooling

■ Choice of 𝑓

■ 𝑓 can be given by:

𝑓 𝐱𝑖 , 𝐱𝑗; 𝛉 = 𝛉𝐱𝑖

𝑓 𝐱𝑖 , 𝐱𝑗; 𝛉 = 𝛉(𝐱𝑖 − 𝐱𝑗)
or MLP(𝐱𝑖 , 𝐱𝑖 − 𝐱𝑗).

■ For 𝛉 = 𝐈 this resembles the action of the Laplacian: 𝐱𝒋
(𝒌+𝟏)

= − 𝐋𝐗(𝒌)
𝒋
.

■ Aggregation over 𝜅-hop neighbors introduces 𝜅 as a structural parameter.      

This controls the receptive field at each layer.

■ Normalization with respect to 𝒩(𝑣𝑗) is often required to mitigate sensitivity to 

varying neighborhood sizes and to improve stability during training.

■ Graph pooling: to obtain a graph-level representation 𝐲 ∈ ℝ𝐶: 

𝐲 = ⊕
𝑖|𝑣𝑖∈𝑉

𝐱𝑖,

⊕: denotes a permutation-invariant operation, used to compute a global graph 

representation for tasks like molecule classification or event detection.

■ Other approaches: graph coarsening, learned pooling (DiffPool, SAGPool).

Fig. : 𝐱 ∼ U([−1,1]), ⊕= σ (+ norm.) 3-hop 

neighborhood, with 𝛉 = 𝐈 . Neighborhood 

aggregation leads to feature homogenization

at depth.

CEA – EDF – INRIA Summer School June 19th, 2025
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Graph neural networks
○○○●○○○○○○ Graph Convolutional Networks (❷)

ሚ𝐋sym = 2𝜆max
−1 𝐋𝐬𝐲𝐦 − 𝐈 ⇒ 𝜎 ሚ𝐋sym ⊂ [−1,1].

Approx. 𝜆max = 2 and 𝜃𝑖𝑗0
𝑘
= −𝜃𝑖𝑗1

𝑘
. 

■ Learning Convolutional Filters

■ Each channel CNN

𝐱[𝑗](𝑘+1) = 𝑔(σ𝑖=1
𝐶𝑘 𝐱[𝑖](𝑘) ∗𝐺 𝐰𝑖𝑗

(𝑘)
),

where filters 𝐰𝑖𝑗
(𝑘)

∈ ℝ 𝑉 ×|𝑉| are approximated using Chebyshev

polynomials, i.e. 𝑤(𝜆) = σ𝑚 𝜃𝑚T𝑚(𝜆)

𝐱[𝑗](𝑘+1) = 𝑔(σ𝑖=1
𝐶𝑘 σ𝑚=0

𝐾 𝜃𝑖𝑗𝑚
𝑘
T𝑚(ሚ𝐋sym) 𝐱

[𝑖](𝑘)).

■ Using T0 ሚ𝐋sym = 𝐈 and T1 ሚ𝐋sym = ሚ𝐋sym and keeping 𝑚 = 0,1 gives 

the GCN approximation

𝐱[𝑗](𝑘+1) = 𝑔(σ𝑖=1
𝐶𝑘 𝜃𝑖𝑗0

𝑘
(𝐈 + 𝐃−

1

2𝐀𝐃−
1

2)
෩𝐀

𝐱[𝑖](𝑘)).

In matrix form, the update rule ℎ
𝛉(𝑘)
k
: ℝ|𝑉|×𝐶𝑘 → ℝ|𝑉|×𝐶𝑘+1 is given by

𝐗(𝑘+1) = ℎ
𝛉 𝑘
k

𝐗(𝑘) = 𝑔((𝐈 + 𝐃−
1

2𝐀𝐃−
1

2)𝐗 𝑘 𝛉(𝑘)).

𝐀

𝐃−
1
2𝐀𝐃−

1
2

𝐀𝐬𝐲𝐦

𝐃−
1
2𝐋𝐃−

1
2

𝐋sym

𝐋sym − 𝐈

ሚ𝐋sym

𝐋 = 𝐃 − 𝐀

𝐈 + 𝐀sym

෩𝐀

𝐋sym = 𝐈 − 𝐀sym

ሚ𝐋sym = 𝐈 − ෩𝐀
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Graph neural networks
○○○○●○○○○○ MPNN and GCN drawbacks

■ Over-smoothing [1,2]

■ For a GCN:

𝐗 𝑘+1 = 𝜎(෩𝐀𝐗(𝑘)𝐖),

After 𝐿 layers (𝜎 = id):

𝐗 𝐾 = ෩𝐀𝐾𝐗(0)ς𝑘=0
𝐾−1𝐖𝑘.

■ Repeated applications of the symmetrically normalized adjacency 

matrix ෩𝐀 cause spectral filtering with decaying modes 

෩𝐀𝐾𝐗(0) = 𝐔𝚲𝐾𝐔∗𝐗 0

𝐾→∞
𝐔1𝐔1

∗𝐗(0)

■ Only the top eigenvector 𝐔1 (often const.) survives (𝜎 ෩𝐀 ⊂ [−1,1]), leading 

to identical features for all nodes → over-smoothing.

■ Influence distribution of the nodes [3]

■ Influence score 𝐼𝑢
𝑘

𝑣 = Tr(𝜕
𝐱𝑣
0 𝐱𝑢

(𝑘)
).

■ For a standard MPNN or GCN, 𝐼𝑢
𝑘

𝑣 ∼ 𝔼(𝐏𝑘𝐱𝑢).
■ This links MP to stochastic diffusion on the graph and explains the 

progressive loss of locality in deeper layers.

[1] Rusch, Bronstein, Mishra, arxiv abs/2303.10993, 2023.

[2] Li, Han & Wu, AIAA Conf on AI, 2018.

[3] Xu et al., arxiv: abs/1806.03536, 2018.

Fig. : over-smoothing

𝑋𝑗
0
= 𝛿1𝑗, 𝐗

(𝑘+1) =

෩𝐀𝐗(𝑘).
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Graph neural networks
○○○○○●○○○○ MPNN and GCN drawbacks

Fig. : A graph and multiple paths

to connect 𝑣𝑖 (𝑖 = 1, … , |𝑉|) and 𝑣𝑗.

■ Over-squashing [1]

■ Inability of GNNs to capture long-range dependencies due to 

compression of messages through paths 𝛾 of 𝐺.

■ From update to paths (𝑋 ∈ ℝ 𝑉 ×𝐶)

𝑋𝑗
(𝐾)

= σ𝑗=1
|𝑉| ෩𝐀𝐾

𝑖𝑗

σ
𝛾∈Γ𝐾

𝑖𝑗 ς 𝑢,𝑣 ∈𝛾
෩𝐀𝑢𝑣

𝑋𝑗
(0)

,

■ Γ𝐾
𝑖𝑗

: set of all paths of length 𝐾 from node 𝑖 to node 𝑗. 

■ ෩𝐀𝐾: aggregates the contributions of all sequences of 𝑲 hops connecting 𝑗
to 𝑖, each weighted by the product of edge weights along 𝛾.

■ Bottlenecks (Alon & Yahav, 2020)

■ When a large number of paths from distant nodes must pass through a 

limited set of intermediate nodes, these nodes are unable to carry sufficient 

information due to the fixed 𝐶→ over-squashing.

𝛾1𝑖

𝛾2𝑖

Bridge between

2 clusters

[1] Alon & Yahav, arxiv abs/2006.05205, 2020.
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Graph Neural Networks
○○○○○○●○○○ GNNs expressiveness

■ Permutation invariance

■ A model 𝑓(𝐀, 𝐗) is permutation invariant if for all 𝐀 ∈ ℝ 𝑉 ×|𝑉|, all feature 

matrix 𝐗 ∈ ℝ 𝑉 ×𝐶, and all permutation matrix 𝐏 ∈ ℝ 𝑉 ×|𝑉|:

𝑓 𝐏𝐀𝐏T, 𝐏𝐗 = 𝑓(𝐀, 𝐗)

Permutation equivariance: 𝑓 𝐏𝐀𝐏T, 𝐏𝐗 = 𝐏𝑓(𝐀, 𝐗).

■ Graph isomorphism

■ Two graphs 𝐺1 and 𝐺2 are isomorphic if ∃ 𝐏 ∈ ℝ 𝑉 ×|𝑉| s.t. 𝐏𝐀1𝐏
T = 𝐀2. 

Extension to tuples (𝐺1, 𝐗1) and (𝐺2, 𝐗2): 

𝐏𝐀1𝐏
T = 𝐀2 and 𝐏𝐗1 = 𝐗2.

■ 𝑓 permutation invariant and 𝐺1, 𝐗1 ∼ 𝐺2, 𝐗2 ⇒ 𝑓 𝐀1, 𝐗1 = 𝑓(𝐀2, 𝐗2).
■ Graph isomorphism testing is NP-indeterminate problem [1].

■ Heuristic: Weisfeler-Lehmann (1-WL) [2].

■ Expressive power of many MPNN-based GNNs is upper-bounded by the 

1-WL test — a heuristic for distinguishing non-isomorphic graphs.

[1] László Babai, arXiv:1512.03547, 2015.

[2] Hamilton, Synthesis Lectures on AI & ML, 2022.

0

1

2

3
0

3

2

1

(𝐺1, 𝐗1) (𝐺2, 𝐗2)

𝑓

Expr(𝑓) < 1-WL

1 t-uple
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Graph Neural Networks
○○○○○○○●○○ Graph Attention Networks

■ Back to the aggregation step

■ The GAT framework [1] defines a GAT layer as:

𝐱𝑗
(𝑘+1)

= 𝜎 σ
𝑖|𝑣𝑖∈𝒩 𝑣𝑗

𝛼𝑖𝑗𝛉𝐱𝑖
(𝑘)

,

or 𝐗(𝑘+1) = 𝜎(𝛂T𝐗 𝑘 𝛉 𝑘 T), where 𝛼𝑖𝑗 = softmax(𝑒𝑖𝑗)

𝑒𝑖𝑗 = 𝑎 𝐖𝐱𝑖 ,𝐖𝐱𝑗 1𝑣𝑗∈𝒩(𝑣𝑖)
.

■ 𝑎:ℝ𝐶𝑙 ×ℝ𝐶𝑙 → ℝ: 1-layer MLP (+ LeakyReLU) or inner product/cos. similarity.

■ Multi-head attention [2] introduces 𝑀 coefficients 𝛼𝑖𝑗
𝑚 and 𝐱𝑗

(𝑘+1)
= ||

𝑚
𝜎(. ).

■ Close to GCNs in form: the GAT layer can be seen as a GCN where ෩𝐀 is 

replaced by a learnable attention matrix 𝛂T.

■ GAT and Beyond

■ GAT layers remain permutation invariant (as GCNs).

■ GATv2 [3] resolves expressiveness issues by allowing 𝑒𝑖𝑗 = 𝐚T𝜎 𝐖 𝐱𝑖||𝐱𝑗 .

■ Limitations: like MPNNs, standard GATs are still limited by the 1-WL 

expressiveness [4].

𝐱𝑗1
(𝑘)

𝑣𝑗2

𝐱𝑗2
(𝑘)

𝐱𝑗3
(𝑘)

𝑣𝑗1

𝑣𝑗3

𝑣𝑗𝛼𝑗𝑗1

𝛼𝑗𝑗2

𝛼𝑗𝑗3

[1] Velickovic et al., arxiv:1710.10903, 2017.

[2] Vaswani et al., NeurIPS, 2017.

[3] Brody et al., arxiv: 2105.14491, 2022.

[4] Xu et al., Arxiv:1810.00826, 2018

𝛼𝑖𝑗 =
exp(𝑒𝑖𝑗)

σ𝑘∈𝒩(𝑣𝑖)
exp(𝑒𝑖𝑘)

Fig. : attention-based

message passing for 𝑣𝑗. 

Thicker arrows indicate 

higher importance.
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Graph Neural Networks
○○○○○○○○●○ Graph Transformers

■ From local to global attention

■ Laplacian Positional Encoding [1,2],

for 𝑣𝑖 we extract 𝐩𝑗 = 𝑈𝑖1⋯𝑈𝑖𝑘 ∈ ℝ𝑘

■ Serve as structural anchors for each node in the attention space, 

enabling the model to reason about graph topology.

■ Allow the model to distinguish nodes with similar features but 

different topological roles, which is not possible using node features alone.

■ Graph attention layers are defined by

𝐡𝑗
(𝑙+1)

= σ𝑘=1
𝐾 σ

𝑖|𝑣𝑖∈𝒩 𝑣𝑗
𝛼𝑖𝑗
𝑙𝑘𝛉𝑙𝑘 𝐱(𝑙) ,

𝐱𝑗
(𝑙+1)

= No ∘ 𝑓 ∘ No(𝐱𝑗
𝑙
+ 𝐡𝑗

(𝑙)
),

■ No: BatchNorm or LayerNorm; 𝑓: (nonlinear) MLP, 𝐱𝑖
(0)

= 𝐱𝑖 +𝐖𝐩𝑖; 

attention coefficients 𝛼𝑖𝑗
𝑙𝑘 are obtained from 𝑒𝑖𝑗

𝑘𝑙 = 𝑎 𝐖𝐱𝑖 ,𝐖𝐱𝑗 / 𝐶𝑙 .

■ Global attention if 𝒩 𝑣𝑗 → 𝑉.

⃦

[1] Dwivedi et al., arxiv:2003.00982, 2023.

[2] Vaswani et al., NeurIPS, 2017.

[3] Cite GPS, etc.

Fig. : GT retain the modular 

structure of transformers [2], 

sequences are replaced by 

graphs ⇒ requires PE. 
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Graph Neural Networks
○○○○○○○○○● Improving Expressivity: what’s beyond MPNNs?

■ Add Features: enrich node/edge descriptors

■ Add domain knowledge or structural information (degrees, distances, orbits, etc.).

■ Random initial features to break symmetry [Sato et al., 2021].

■ Subgraph-based features: counts, motifs, positional encodings → GSN: Substruct. Net. [Bouritsas et al., 2022].

■ Effective resistance & hitting times [Topping et al., 2022].

■ Limitations: not always transferable; handcrafted choices may lack generality.

■ Modulate Message Passing: adapt interactions
■ Use edge-dependent weights, attention, anisotropy → GAT: Graph Attention Networks [Velickovic et al., 2018].

■ Identity-aware aggregation [You et al., 2021].

■ Directional aggregation from Laplacian eigenflows → DGN: Directional GNNs [Beaini et al., 2021].

■ Can capture fine-grained node distinctions & directionality.

■ Tradeoff: increased complexity, may amplify overfitting.

■ Modify the Graph: act on the computation structure

■ Rewire the graph to enhance connectivity → DropEdge, digraph rewiring, adding virtual nodes.

■ Use high-order structures → k-WL GNNs [Morris et al., 2019], Ring-GNN [Chen et al., 2019].

■ Subgraph GNN [Zhang et al., 2021].

■ Encode hierarchy and locality → Nested GNNs, Hierarchical Pooling.

■ Drawback: cost scales with higher-order terms.
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Graph Neural Operators
NO, GNO and Spatio-Spectral GNO
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Graph Neural Operators
●○○○ Neural Operators

■ Intuition of NO (𝑡 is ignored for simplicity)

■ If 𝐺 is the Green function of PDE ℒ 𝑎 𝑥 = 𝑓, then 𝑥 = 𝐺 ∗ 𝑓.

■ 𝐺 is modelled as a kernel 𝜅𝛉: 𝐺 𝐩, 𝐪 ≃ 𝜅𝛉 𝐩, 𝐪, 𝑎 𝐩 , 𝑎 𝐪 and 

for any 𝐱:ℝ𝑑 → ℝ𝑚, a NO is defined by

𝐊𝛉𝐱 𝐩 = න𝜅𝛉 𝐩, 𝐪, 𝑎 𝐩 , 𝑎 𝐪 𝐱 𝐪 d𝐪 .

■ FNO 𝜅𝛉 𝐩, 𝐪, 𝑐 𝐩 , 𝑐 𝐪 = 𝜅𝛉 𝐩 − 𝐪 ⇒ 𝐊𝛉𝐱 𝐩 = 𝜅𝛉 ∗ 𝐱.

■ Architecture of NOs

■ The mapping is learnt iteratively:

𝑎 𝐩 , 𝐩 →
𝑃
𝐗(0)→

𝐹1
⋯

𝐹𝐿
𝐗(𝐿)→

𝑄
𝑢 𝐩 , 

𝐗(𝑙) = 𝜎𝑙 [𝐖
(𝑙)+𝐊 𝑎 𝐗(𝑙−1) + 𝐛(𝑙)).

■ 𝑃: uplift layer, 𝑄: projection layer.

■ If 𝐊 is a convolution kernel, the convolution theorem leads to:

𝐊 𝑎 𝐱 = ℱ−1(ℱ 𝛋
𝐑

ℱ 𝐱 )

■ The weights 𝐑 are learnt inside each layer.

* Zongyi Li, Kovachki et al., 2021.

Uplift 𝑃

F-Fourier

F-Fourier

Proj. 𝑄1

Input: 𝑎 𝐩𝑖 𝑖, 𝐩 ∈ ℝ3

Proj. 𝑄𝑁

⋮

𝑢1 𝐩⊥, 𝑡𝑗 𝑖,𝑗
𝑢𝑁 𝐩⊥, 𝑡𝑗 𝑖,𝑗

𝐑 (Fourier filters)

Output: multiples projections (𝐩⊥ ∈ ℝ2).
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■ Low-frequency truncation

■ In practice 𝐑 is truncated to the first 𝑚 modes to 

obtain a low-rank operator acting on 𝐗(𝐤).
■ Convolution in a FNO can be re-written as:

𝐗(𝑘+1) = 𝜎(ถℱ−1

↓

(𝐑ℱ(𝐗 𝑘

↓

)))

Analogy GCN:         𝐔 𝐔T𝐗(𝑘)

■ 𝐗(𝑘) ∈ ℝ𝑁×𝐶𝑘 multi-channel field, 𝐑 ∈ ℝ𝑚×𝑚.

■ Extension to graphs

■ The Fourier basis (FNO) can be replaced with 

the graph Laplacian eigenbasis 𝐔𝐦:

𝐗(𝑘+1) = 𝐔𝑚𝐑 ×1 𝐔𝑚
⊤ 𝐗(𝑘).

■ 𝐔 ∈ ℝ 𝑉 ×𝑚, 𝐑 ∈ ℝ𝑚×𝐶𝑘×𝐶𝑘+1 and 𝐗(𝑘) ∈ ℝ 𝑉 ×𝐶𝑘.

■ ×1 refers to a mode-1 tensor contraction.

■ The MLP in a FNO can be replaced by a MPNN.

29

Graph Neural Operators
○●○ From FNOs to GNOs

𝑚:4
𝑚: 42

Ref

𝑅 = 1.06

4
42

d
is

ta
n
c
e
 (

k
m

)
𝑡 − 𝑝⊥/𝑐0 (s)

Fig. : 2D wave propagation in waveguides. 

Input: sound speed 𝑐:ℝ2 → ℝ, output: 

waveforms 𝑢:ℝ2 → ℝ; 4 layers, 48 

neurons/layer, 𝑚 is varied.
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■ Global Spectral Graph Convolution

■ General form of graph convolution:

𝐱[𝑗](𝑘+1) = 𝜎(σ𝑖=1
𝐶𝑘 𝐱[𝑖](𝑘) ∗𝐺 𝐰𝑖𝑗

(𝑘)
),

■ ∗𝐺: Graph convolution, defined as filtering via Λ, i.e. 𝐱 ∗𝐺 𝐰 = 𝐔𝑔𝜃(𝚲)𝐔
T𝐱.

■ 𝐰𝑖𝑗
(𝑘)

: learnable spectral filters between channel 𝑖 and 𝑗. For multi-valued 

𝐗 ∈ ℝ 𝑉 ×𝐶𝑘, we introduce 𝐑 ∈ ℝ 𝑉 ×𝐶𝑘×𝐶𝑘+1

𝐗(𝑘+1) = 𝜎 𝐔𝑚 𝐑 ×1 (𝐔m
T 𝐗(𝑘)) .

■ 𝐔𝑚: first 𝑚 eigenvectors of 𝚲 computed using Locally Optimal Block 

Preconditioned Conjugate Gradient (LOBPCG) algorithm → computational 

cost 𝑂(𝑚𝜅|𝑉|) if 𝐺 is obtained using the 𝜅-NN.

■ Local Convolution with Spatial GNN

■ Aggregation is limited to the 1-hop direct neighbors 𝐱𝑖
(𝑘)

∈ ℝ𝐶𝑘

𝐱𝑗
(𝑘+1)

= σ𝑖|𝑣𝑖∈𝒩(𝑣𝑗)
𝛼𝑗𝑖𝐖𝐱𝑖

(𝑘)
.

■ 𝛼𝑖𝑗 = 𝜎2(𝐖3𝜎1(𝐖1[𝐡𝑗||𝐡𝑖||𝐖2𝑤𝑖𝑗])): edge-weights are learned within a 

gating mechanism, with 𝑤𝑖𝑗 = 𝐩𝑖 − 𝐩𝑗 , where 𝐩𝑖 is the positions of node 𝑖

and 𝐡𝑖 is its Lipschitz embedding*.

30

Graph Neural Operators
○○● Spatio-Spectral GNO * Sarkar & Chakraborty, 2409.00604, 2024.

Fig. : Neural architecture of a 

block. It exploits spectral and 

spatial GNN to formulate the kernel 

integration operator [1].

𝑓 concatenates the outputs of 

Spectral and Spatial GNNs.

𝐔𝑚
𝑇 𝐔𝑚𝐊
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seismology
Architectures, performance, interpretability, 
over-smoothing, practice
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Dynamic GNN for Seismology
●○○○○○○○○○○○○ A practical example

Goal of the approach:

■ Learn a parametric model

𝑓𝛉: 𝕊 → ℝ4

𝐒 ↦ 𝐲

■ Input: V × 𝑑 signals recorded by |𝑉| stations and sampled 

using 𝑃 time steps. 𝑑: NS, EW, Up-Down components.

■ Output: characteristics of events.

■ Loss function:

ℒ =
1

4𝑛
σ𝑘=1
𝑛 σ𝑗=1

4 | ො𝑦𝑘𝑗 − 𝑦𝑘𝑗|.

■ 𝑦𝑘𝑗: latitude, longitude, depth, or magnitude of event 𝑘.

Graph-related issues

■ 𝕊 is unstructured and evolve over time (lack of data, 

temporary stations     vs fixed stations     ).

■ The graph is not specified and 𝐀 is a priori not known.

Fig. Southern California Seismic Network
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Dynamic GNN for Seismology
○●○○○○○○○○○○○ Pipeline

❶ Convolutional Encoding ℎ
𝛉 I
I
: ℝ3𝐶0 ↦ ℝ𝑑(I)

■ Extraction of temporal features (CNN-based encoder):

𝑥𝑠
𝑖 𝑙

𝑛 = ReLu(𝑏i
l
+ σ𝑗=1

𝑑𝑙−1 𝐖𝑗𝑖
(𝑙)
∗ 𝑥𝑠

𝑗 𝑙−1
[𝑛]

σ𝑘=0
4 𝑤

𝑗𝑖𝑘
(𝑙)

𝑥𝑠
[𝑗](𝑙−1)

[𝑛+𝑘]

).

■ 𝑥𝑠
[𝑖](𝑙)

[𝑛]: value of the 𝑖-th feature channel at time index 𝑛 for station 𝑠 at layer 𝑙.
■ Valid output indices: 𝑛 < 𝑚𝑙−1 − 4 ⇒ temporal dimension shrinks accross layers.

❷ Spatial information integration ℎ
𝛉 II
II
: ℝ(𝑑(I)+2)×|𝑉| → ℝ𝑑(II)×|𝑉|

❸ Aggregation Pool:ℝ𝑑(II)×|𝑉| → ℝ𝑑(II)

❹ Prediction ℎ
𝛉 III
III

: ℝ𝑑(II) → ℝ4

■ Extraction of graph-level information:

𝐲 = 𝜎2
III
(𝐖2

III
𝜎1

III
𝐖1

III
𝐳 + 𝐛1

III
+ 𝐛2

(III)
)

■ 𝐳 ∈ ℝ𝑑(II) is derived by aggregating the features 𝐗 ∈ ℝ𝑑 II ×|𝑉|
using Pool(h

θ II
II

(. )).

𝐒

𝐲

❶

❹

❸

❷

𝑑 × 𝑃 × |𝑉|

𝑑(I) × |𝑉|

𝑑(II) × |𝑉|

4

𝑑(III)

𝐬𝑠
[.]
∈ ℝ𝑑×𝑃

𝐬𝑠
[𝑦]

𝐬𝑠
[𝑥]

𝐬𝑠
[𝑧]

Fig. : Pipeline.
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Dynamic GNN for Seismology
○○●○○○○○○○○○○ Three GNN blocks

❷ Spatial information integration ℎ
𝛉 II
II
: ℝ(𝑑(I)+2)×|𝑉| → ℝ𝑑(II)×|𝑉|

■ Concatenating and “mixing” → Edgeless-GNN

𝐱s
(II)

= 𝜎2
II
(𝐖2

II
𝜎1

II
𝐖1

II 𝐱𝑠
(I)
+ 𝐛1

II
+ 𝐛2

(II)
),

■ 𝐱𝑠
(I)

= 𝐱𝑠
(I)
||𝐩𝑠, 𝐩𝑠 is the geographic position of station 𝑠 and 𝐱𝑠

I
= ℎ

𝛉 I
I
(𝐱𝑠)

the temporal feature extraction of waveforms (𝐒 ∈ ℝ𝑑×𝑃× 𝑉 ).

■ Using a local GCN → Spectral-GNN

𝐱s
(II)

= 𝜎(𝐱𝑠𝐖+σ𝑗|𝑣𝑗∈𝒩geo(𝑣𝑠)
𝐷𝑠𝐷𝑗

−1/2
𝐱𝑗𝐖) or 𝐗s

′ = 𝜎(෩𝐀𝐗𝐖),

■ 𝐷𝑖: # of neighbors of 𝑣𝑖 (fixed graph), ෩𝐀 = 𝐈 + 𝐃−
1

2 𝐀 + 𝐀T 𝐃−
1

2/2 so that we 

obtain 𝐷𝑖 = σ𝑖(𝐴𝑖𝑗 + 𝐴𝑗𝑖)/2. 

■ 𝒩geo(𝑣𝑠): neighborhood of node 𝑣𝑠 according to the geographic proximity.

■ Using a MPNN → Dynamic-GNN

𝐱s
(II,𝑙+1)

= σ𝑘∈{1,2} ⊕
𝑗|𝑣𝑗∈𝒩𝑘(𝑣𝑠)

𝑓𝑘
𝑙
(𝐮𝑠

II,𝑙
, 𝐮𝑗

II,𝑙
− 𝐮𝑠

(II,𝑙)
)).

𝐒

𝐲

❶

❹

❸

❷

𝑑 × 𝑃 × |𝑉|

𝑑(I) × |𝑉|

𝑑(II) × |𝑉|

4

𝑑(III)

Fig. : Pipeline, 

sub-components.
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Dynamic GNN for Seismology
○○○●○○○○○○○○○ Spatio-Temporal Graph Local Convolution

ST-GC Block (based on MP → local)
■ Geographic distance

𝐱s,geo
(𝑙+1)

= max
𝑗|𝑣𝑗∈𝒩geo(𝑣𝑠)

𝑓geo
𝑙
(𝐮𝑠

,𝑙
, 𝐮𝑗

𝑙
− 𝐮𝑠

𝑙
),

■ 𝐮𝑠 = 𝐱𝑠||𝐩𝑠 (𝐩𝑠 ∈ ℝ2) allow the model to distinguish nodes 

with similar features but different topological roles.

■ Asymmetric update ℝ𝑑geo → ℝ𝑑(1); 𝑑(1): dimension of the 

encoded features; input dim.: 2(𝑑 1 + 2).

■ 𝒩geo
(𝑙)

: 𝜅-NN of based on geographic positions 𝐩𝑖 − 𝐩𝑗 2
.

■ Feature similarity

𝐱s,dist
(𝑙+1)

= max
𝑗|𝑣𝑗∈𝒩sig(𝑣𝑠)

𝑓sig
𝑙
(𝐱𝑠

,𝑙
, 𝐱𝑗

𝑙
− 𝐱𝑠

𝑙
),

■ Asymmetric update ℝ𝑑sig → ℝ𝑑(1); input dim.: 2𝑑 1 .

■ 𝒩sig
(𝑙)

: 𝜅-NN with 𝐱𝑖 − 𝐱𝑗
2
: combine 𝐱𝑖 ’s from distant stations.

■ Multi-scale embedding 𝑓:ℝ 𝐿+1 𝑑(1)×|𝑉| → ℝ𝑑(1)×|𝑉|

𝐗(0) || 𝐗(1) || 𝐗(2)⋯ || 𝐗(𝐿) where 𝐗(𝑙) = 𝐗geo
(𝑙)

⊕𝐗dist
(𝑙)

⊕

⋯
⋮

❷
𝑓

ST-GC

max
𝒩
sig
(𝑙)
𝑓sig
(𝑙)

max
𝒩geo

(𝑙)
𝑓geo
(𝑙)

Fig. : ST-GC Block and multi-

scale embedding.
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Dynamic GNN for Seismology
○○○○●○○○○○○○○○ Overview

Convolutional encoding (shared)

■ 12 convolutional layers (kernel size = 5).

■ Max pooling applied every 3 layers (kernel size = 4).

Spatial information integration 

■ Edgeless-GNN and Spectral-GNN

■ 2-layer MLP followed by max-pooling.

■ Hidden layer size: 27 = 128 ⇒ 𝑑(II) = 128.

■ For (local) GCN, 𝜅 = 5 spatial neigbors per node.

■ Dynamic-GNN

■ ST-GC: 2-layer MLPs (one MLP per graph: geometric & 

feature-based). ST-GC block is repeated 𝐿 = 4 times.

■ Hidden layer size: 32 per branch. 

■ 𝜅 = 5, 𝐿 = 4 layers ⇒ 𝑑(III)= 𝐿 + 1 𝑑(I) = 5 × 26 = 320.

Prediction

■ 2-layer MLP with a hidden size of 128.

𝐱1

⋮

…

⋮
…

𝐱|𝑉|

[𝐩1⋯𝐩|𝑉|]

𝐗(1)

𝐗(2)

⋮
𝐗(𝑁−1)

𝐗(𝑁)

⋮

[𝐱1⋯𝐱|𝑉|]

|

𝐲

𝐳

𝐗‖𝐏 128
32
64

132
32
6466

128
128

128
32
64

132
32
64

66
4128

𝑝𝑠𝑦

𝐱𝑠

𝑝𝑠𝑥

❶

❷

❸

2048 × 3

Fig. : Scheme of 

the architecture.
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Applications for seismology
○○○○○●○○○○○○○○ Datasets

■ 20 yrs (01/01/2000 – 06/30/2019).

■ 3493 events with 𝑀𝑙 > 2.

■ 72 stations, 3 components.

■ 3 yrs (01/01/2019 – 12/31/2021).

■ 13479 events (12 × 12 deg).

■ 3435 events with 𝑀𝑙 > 2.

■ 42 stations, 1 component.

𝑙 (× 103 km)

Magnitude 𝑀𝑤

Resif1 (France)

SCSN2 (USA)

Resif2.5

1011 events

1 Péguegnat et al., doi: 10.1785/0220200392 (2021)
2 Hutton, Woessner, Hauksson (2010), doi: 10.1785%2F0120090130 (2010)
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Applications for seismology
○○○○○○●○○○○○○○ Performance comparison

Error metrics

■ RMSE (for given 𝑦 ∈ ℝ)

ത𝐸 =
1

𝐾
σ𝑘=1
𝑅 1

𝑅
σ𝑟=1
𝑅 1

|𝒟𝑘|
σ𝑗∈𝒟𝑘

𝜖𝑗𝑘𝑟
2

𝐸𝑘𝑟
ത𝐸𝑘

.

■ 𝜖𝑗𝑘𝑟 = 𝑦𝑗 − ො𝑦𝑗𝑘𝑟 with 𝑦𝑗: ground-truth for the 𝑗-th event 

in the test set 𝒟𝑘 and ො𝑦𝑗𝑘𝑟: predicted value.

■ 𝐸𝑘𝑟: RMSE for fold 𝑘 and seed 𝑟 (𝑅 = 10 and 𝐾 = 10).

■ ത𝐸𝑘: average RMSE over the 𝑅 seeds, for each fold.

■ ത𝐸: global RMSE.

■ Total variance

𝜎2 =
1

𝐾𝑅
σ𝑘=1
𝐾 σ𝑟=1

𝑅 𝐸𝑘𝑟 − ത𝐸 2.

■ Variance to seed-level variability and that induced by 

differences between test-folds.

■ Boxplots of 𝐸𝑘𝑟 potential outliers and assess the 

stability/dispresion of model predictions.

GNN ത𝐸 ± 𝜎 (SCSN) ത𝐸 ± 𝜎 (Resif2.5)

Edgeless- 0.175 ± 0.019 0.151 ± 0.018

Spectral- 0.149 ± 0.020 0.161 ± 0.020

Dynamic- 0.129 ± 0.013 0.141 ± 0.020

|𝒟| 𝜖𝑀𝑤

3000 0.136 ± 0.017

2000 0.136 ± 0.016

1000 0.148 ± 0.018 Analyst

Best GNN per 

fold: 𝐸min,𝑘

Edgeless-
Dynamic-

Fig. : ❶ ത𝐸, 𝜎; ❷ boxplots 

for 𝐸min,𝑘 = min
𝑟

𝐸𝑘𝑟; ❸

impact |𝒟|.

𝐗 ∈ ℝ3×𝑃×|𝑉| 𝐗 ∈ ℝ𝑃×|𝑉|

❶

❷

❸

𝐸min,𝑘 > 𝐸min,𝑘[ ]❷
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Applications for seismology
○○○○○○○●○○○○○○ Variance analysis

Variance decomposition

𝜎2 =
1

𝐾𝑅
σ𝑘=1
𝐾 σ𝑟=1

𝑅 ത𝐸𝑘 − ത𝐸𝑘
2

𝜎opt
2

+
1

𝐾
σ𝑘=1
𝐾 ത𝐸𝑘 − ത𝐸 2

𝜎dat
2

.

■ 𝜎opt
2 : seed-level variability.

■ 𝜎dat
2 : variability induced by differences between test folds.

Main results Edgeless vs Dynamic

■ Observations

■ 𝜎2 is primarly driven by 𝜎dat
2 as 𝑀𝑤 ↗.

■ 𝜎dat
2 ↘ with Dynamic-GNN.

■ Explanations

■ Architecture: Dynamic-GNN leverages adaptive topology.

■ Distribution: More data reduces average RMSE, but 

imbalanced 𝑀𝑤 distribution ⇒ 𝜎2 ↗ for rare (large) events.
■ Optimization: seed-dependent variability accounts for 1/3 

of 𝜎2; mainly affects low-𝑀𝑤 events with weaker feature 

signals and higher SNR.

Resif, 𝑦 = 𝑀𝑤

Dynamic-GNN

SCSN, 𝑦 = 𝑀𝑤

Dynamic-GNN

Edgeless-GNN
Fig. : Variance 

decomposition
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Applications for seismology
○○○○○○○○●○○○○○ Robustness to input signals

Three strategies

𝐗S0 → 𝐗S1 → 𝐗S2
■ S0 (standard): reference configuration

■ Broadband filtering (1–8 Hz): removes LFs below the corner frequency 

(∼ 0.2 Hz), which are critical for seismic moment estimation.

■ Aligned time windows, based on origin time 𝑡0 of each event.

■ S1 (narrowband): filtered waveforms

■ Apply a bandpass filter (1–1.5 Hz).

■ Removes much of the spectral content related to rupture complexity 

(e.g., HF scattering outside the band).

■ S2 (random sliding): misaligned windows

■ Apply a random shift (102U([−1,1])) to the start time of each window.

■ Add station-specific time shifts compare to published works*.

■ Breaks alignment to theoretical arrival times, simulating poor or missing 

phase picks (e.g., early warning, low-SNR environments).

SCSN

Resif2.5

Edgeless Spectral Dynamic

* van den Ende & Ampuero (2020), doi:10.1029/2020GL088690

Fig. : Bosplots (RMSE) 

for S0, S1 and S2.
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Trends

■ Why doesn’t Dynamic-GNN outperform Edgeless-GNN 

on Resif2.5 and S2? (❶)

■ S2 do not impact localization performance (❷)

■ A proxy scale can be defined as:

𝜆 =
1

𝑁(𝜅−1)
σ𝑖=1
𝑁 σ𝑗=1

𝜅−1𝑑geo(𝑣𝑖 , 𝑛𝑗(𝑣𝑖)).

𝑑geo: geodesic distance to the neighbors 𝑛𝑗(𝑣𝑖)

■ 𝜆 ≃ 104 km for Resif2.5 and 𝜆 ≃ 39 km for SCSN.

■ GNN are able to resolve sub-𝝀 spatial differences.

❶

■ The retained events (𝑀𝑤 > 2.5) are less 

sensitive to SNR effects, making GNN 

models equally robust.

■ The Resif2.5 network is sparse and uneven, 

reducing the ability of dynamic graphs to 

extract meaningful spatial patterns.

■ The limited number of training events 

(≈1000) may not support the higher model 

complexity of Dynamic-GNN.

Applications for seismology
○○○○○○○○○●○○○○ Gains depend on graph and data quality

❷
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Applications for seismology
○○○○○○○○○○●○○ Interpretability of graphs

Sensitivity indices

■ Contribution of node 𝑠 to the final prediction:

𝑆𝑠
𝐿

2
= ∇

𝐱𝑠
𝑙 𝜖

2

2
.

Using 𝐳 = max
𝑠

𝐱𝑠 leads to:

𝑆𝑠
𝐿

2
= σ𝑗=1

𝑑𝑧 1
𝑠=𝑠𝑗

𝐿 𝜕𝑧𝑗𝜖
2

.

𝑆𝑠
𝐿

acts as a station-wise attribution score, highlighting 

which nodes contributed most to the prediction error 𝜖.

Layer-Dependent Spatial Attention

■ Deeper GNN layers focus on fewer, high-

sensitivity stations 𝑉(𝑙) ⊂ 𝑉:

𝑉 𝑙 /|𝑉| → ℎ.

■ Stations cluster near the epicenter, resembling a 

learned spatial attention mechanism.

𝑙 = 2

𝑙 = 1

𝑙 = 3

𝑙 = 4

Fig. Feature-space graphs 

for Resif2.5, built using 𝜅 = 5. 

Colors: 𝑆𝑠
(𝑙)

for 𝜖𝑀𝑤
. Directed 

edge 𝑒𝑖𝑗 is grayed out if

𝑆𝑖
(𝑙)

< 10−2max
j
𝑆𝑗
(𝑙)

.

ො𝑦
𝑦

𝑆𝑠
𝑙
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Applications for seismology
○○○○○○○○○○○●○○ Oversmoothing

Oversmoothing

■ Deeper GNNs tend to oversmooth, i.e. make node 

embeddings indistinguishable across 𝐺geo and 𝐺sig.

■ For GCNs with fixed topology and linear propagation, ↗ 𝐿
causes the node embeddings to converge towards a low-dim. 

invariant subspace: 𝑑ℳ 𝐗 𝑙 ≤ 𝑠𝜆 𝑙𝑑ℳ(𝐗(0)) [1].

Dirichlet energy Tr(𝐗T𝐋sym𝐗) [2]

■ Measures local variation of node embeddings (low ℰ = 

smoothness). For directed graphs:

ℰ 𝐗 𝑙 = σ𝑖σ𝑗|𝑣𝑗∈𝒩(𝑣𝑖)
𝐞𝑖𝑗
(𝑙)

2

2

■ 𝐞𝑖𝑗
(𝑙)

= 𝐱𝑖
𝑙
𝑑𝑖
in −1/2

− 𝐱𝑗
𝑙
𝑑𝑗
out −1/2

with the dimensions defined 

as 𝑑𝑖
in = 𝜅 and 𝑑𝑗

out = #{𝑣𝑖|𝑣𝑗 ∈ 𝒩(𝑣𝑖)}.

■ This double normalization ensures ℰ remains well-defined when 

𝒩(𝑣𝑖)’s are defined via attention mechanisms.

Fig. Averaged Dirichlet energies over 

all the events and ±𝜎. Exponential 

decrease is satisfied which confirms 

oversmoothing. Resif2.5.

[1] Oono & Suzuki, arxiv 1905.10947, 2019 

[2] Rusch, Bronstein & Mishra, arxiv 2303.10993, 2023
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Applications for seismology
○○○○○○○○○○○○●○ Towards deeper GNNs

2 12 206

0.1 without ⃦
with ⃦

Fig. Prediction error with 

Dynamic-GNN. MAE ± 𝜎 (solid

lines); RMSE (dashed line)

Resif2.5.

# layers (𝐿)

Ref. + ||

𝜖𝑀𝑤

Concat in ❷ mitigates oversmoothing

■ 𝜅 = 𝒩 𝑣𝑖 defines the local receptive field (= 5)

■ Stacking multiple layers means that the local neighborhoods are 

recursively propagated across layers.

■ 𝜅 and 𝐿 should be co-tuned to avoid oversmoothing.

■ || provides multi-scale agreggation (❸) that maps ෩𝐗(𝑳) ∈ ℝ𝐿𝑑

into a lower dimensional space

𝐗 0 ||⋯ || 𝐗(𝐿)

෩𝐗(𝑳)

↦ 𝑧 = Pool(෩𝐗(𝑳)) ∈ ℝ𝑑.

■ 𝐗 0 = 𝐗 || 𝐏 (𝐗: output of ❶) inspired by Positional Encodings.

■ || Plays a similar role to multi-head attention in Graph Transformers: 

aggregating multi-scale relational patterns into a unified representation

■ || can be applied to large classes of GNN.

■ For Edgeless*-GNN and “poor” datasets (Resif2.5) → performance.

■ Preserve express. for GCNs (Chen et al., arxiv 2007.02133, 2020).

Ref*

CEA – EDF – INRIA Summer School June 19th, 2025



Disposition : Titre et contenu

47

Applications for seismology
○○○○○○○○○○○○○● What have we learned?

Dynamic Graphs: Physics-aware and interpretable

■ The Dynamic-GNN learns adaptive station-to-station connectivity, 

reflecting underlying physical processes like wavefront propagation.

■ Sensitivity scores reveal how information is routed, resembling a spatial 

attention mechanism focusing on informative stations near the epicenter.

Concatenation mitigates oversmoothing

■ Aggregating intermediate outputs provides multi-scale information and 

preserves node-wise diversity (conceptually aligned with multi-head 

attention in Transformers, where different attention heads specialize in 

different relational patterns).

Robustness in low-data settings

■ The Dynamic-GNN adapts its graph to the signal structure, improving 

generalization on small or imbalanced datasets (Resif₂.₅ vs SCSN).

■ Fixed-topology models struggle in such settings, as they cannot exploit data-

specific spatial correlations.
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Open questions
●○

Over-SMoothing (OSM)

■ OSM is not always harmful

■ OSM is not systematically detrimental to performance — it can 

help classification if it aligns with the task objective (Fig.).

■ Keriven et al. (2022) suggest: some OSM is desired, especially 

in homophilic graphs.

■ OSM happens non-uniformly

■ Smoothing can occur faster in some embedding subspaces than 

others. If labels are aligned with these slow-smoothing 

subspaces → performance improves.

■ This leads to the idea of task-oriented smoothing.

■ OSM analysis in real-world GNNs

■ Real GNNs may not suffer as much from OSM, thanks to 

residual connections, gated or relational variants, etc.

■ There is a need to extend OSM analysis to real-world 

architectures and not idealized deep GCNs.

CEA – EDF – INRIA Summer School June 19th, 2025

Fig. Evolution of node embeddings 

from a GCN under increasing 

message-passing depth, showing class 

separation collapse as smoothing 

increases.
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Open questions
○●

Over-SQuashing (OSQ)

■ Compression vs. Bottlenecks

■ OSQ arises from exponential compression of messages from many paths 

through a limited number of edges (bottlenecks).

■ Classical metrics (𝜆2, 𝑅tot) often used, but Structural metrics may fail to capture 

task-relevant information flow, especially when node labels or signals are 

misaligned with structural bottlenecks.

■ Bottleneck metrics vs. task sensitivity

■ Metrics like curvature, resistance distance identify structural bottlenecks.

■ But they might not align with what the network is trying to learn → There’s a gap 

between structural measures and task relevance.

■ Spectral perspective

■ Spectral decomposition offers a way to measure how label information 

is distributed across frequency modes:

■ Homophilic labels: aligned with low-frequency modes.

■ Heterophilic labels: encoded in high-frequency components.
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ℛ(𝐺)

Fig. Rewiring the graph improves

connectivity by reducing

bottlenecks. The transformation 

ℛ(𝐺) increases 𝜆2, lowers

resistance 𝑅tot, and facilitates

long-range message passing.



Disposition : FIN

Any questions
now or later?
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