
Some industrialized 
approaches in 
physics-based 

machine learning

20/06/2025

Raphaël CARPINTERO PEREZ

Abbas KABALAN



This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

2

Objectives

Turbine blades
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Objectives

Surrogate model

Costly numerical simulation (~4 hours) 

Field Uncertainties

Turbine blades



This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

4
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Step 1: Generate a design of experiments

Supervised learning context

𝑐 characteristic mesh parameters 

(curvature, cord length, ⋯)

𝑏 boundary/external conditions

Step 2: Create the meshes

Step 3: Finite-element solver

⋯

⋯



This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

6

Supervised learning context

𝑐 characteristic mesh parameters 

(curvature, cord length, ⋯)

𝑏 boundary/external conditions

𝑥(1) 𝑥(2)

⋯

⋯

𝑥(𝑁)

𝑦(1) 𝑦(2) 𝑦(𝑁)

Inputs

Outputs

Meshes

Fields
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Supervised learning context

𝑐 characteristic mesh parameters 

(curvature, cord length, ⋯)

𝑏 boundary/external conditions

Step 3: Finite-element solver

𝑥(1) 𝑥(2)

⋯

⋯

𝑥(𝑁)

𝑦(1) 𝑦(2) 𝑦(𝑁)

Inputs

Outputs

∈ 𝒳
Meshes

Graphs

Fields

Signals
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Supervised learning context

𝑐 characteristic mesh parameters 

(curvature, cord length, ⋯)

𝑏 boundary/external conditions

𝑥(1) 𝑥(2)

⋯

⋯

𝑥(𝑁)

𝑦(1) 𝑦(2) 𝑦(𝑁)

Inputs

Outputs

ℝ ℝ ℝ

∈ ∈ ∈

∈ 𝒳
Meshes

Graphs

Scalars



I) Scalar outputs

1- Gaussian process regression

2- Graph kernels

3- SWWL graph kernel

1- Problem statement

2- Related approaches

3- TOS-GP

4- Experiments

II) Signal outputs
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Regression

Objective:         Learn 𝑓: 𝒳 → ℝ from a set of (noisy) observations 𝒟 = 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑁

𝒳

ℝ
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Regression

𝑓∗ ∈ argmin
𝑓∈ℋ

෍

𝑖=1

𝑁

𝑦𝑖 − 𝑓 𝑥𝑖
2

+
𝜆

2
𝑓 ℋ

2

Minimize a penalized loss function            

(e.g. quadratic) on the train set

𝒳

ℝ

Objective:         Learn 𝑓: 𝒳 → ℝ from a set of (noisy) observations 𝒟 = 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑁
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Gaussian process Regression

𝒳

ℝ

Objective:         Learn 𝑓: 𝒳 → ℝ from a set of (noisy) observations 𝒟 = 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑁
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Gaussian process Regression

𝒳

ℝ

𝒳

ℝ

𝑓 ~ 𝒢𝒫 𝜇, 𝑘  where 𝑘: 𝒳 × 𝒳 → ℝ is a 

symmetric positive definite kernel

𝜎 𝑥 = 𝑘(𝑥, 𝑥)

Objective:         Learn 𝑓: 𝒳 → ℝ from a set of (noisy) observations 𝒟 = 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑁
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Gaussian process Regression

𝒳

ℝ

𝑓 ~ 𝒢𝒫 𝜇, 𝑘  where 𝑘: 𝒳 × 𝒳 → ℝ is a 

symmetric positive definite kernel

𝜎 𝑥 = 𝑘(𝑥, 𝑥) 𝑓 | 𝒟 ~ 𝒢𝒫 ෤𝜇, ෨𝑘

ℝ

𝒳

Objective:         Learn 𝑓: 𝒳 → ℝ from a set of (noisy) observations 𝒟 = 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑁
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Gaussian process Regression

𝑓 | 𝒟 ~ 𝒢𝒫 ෤𝜇, ෨𝑘

ℝ

𝒳

Choice of the kernel 𝑘: 𝒳 × 𝒳 → ℝ  ?

When 𝒳 = ℝ𝑑 :   

 𝑘 𝑥, 𝑥′ =  𝑒−𝜆 𝑥−𝑥′ 2

   (RBF)

 ⋯

Objective:         Learn 𝑓: 𝒳 → ℝ from a set of (noisy) observations 𝒟 = 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑁
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Gaussian process Regression

𝑓 | 𝒟 ~ 𝒢𝒫 ෤𝜇, ෨𝑘

ℝ

𝒳

Choice of the kernel 𝑘: 𝒳 × 𝒳 → ℝ  ?

When 𝒳 = ℝ𝑑 :   

 𝑘 𝑥, 𝑥′ =  𝑒−𝜆 𝑥−𝑥′ 2

   (RBF)

 ⋯

When 𝒳 = 𝒢 is a space of graphs:

Objective:         Learn 𝑓: 𝒳 → ℝ from a set of (noisy) observations 𝒟 = 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑁

𝑘 = ? , 
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What is a graph ?

Case 1 : 

Vertices + Edges

A C
A

B
B

B

Case 2 : 

Vertices + Edges

+ Node labels

Case 3 : 

Vertices + Edges

+ Node attributes

∈ ℝ𝑠 
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What is a graph ?

Case 1 : 

Vertices + Edges

A C
A

B
B

B

Case 2 : 

Vertices + Edges

+ Node labels

Case 3 : 

Vertices + Edges

+ Node attributes

Case 3A: Fixed structure -> signal

Case 3B: Fixed number of nodes

Case 3C: Varying number of 

nodes + structure + attributes

∈ ℝ𝑠 
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What is a graph ?

Case 1 : 

Vertices + Edges

A C
A

B
B

B

Case 2 : 

Vertices + Edges

+ Node labels

Case 3 : 

Vertices + Edges

+ Node attributes

Case 3A: Fixed structure -> signal

Case 3B: Fixed number of nodes

Case 3C: Varying number of 

nodes + structure + attributes

Case 3C+: Varying number of 

nodes + structure + attributes 

+ large-scale + sparse

∈ ℝ𝑠 
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Graph kernels (1/3): Early attempts

𝑉 = 6

𝐸 = 7

Invariants / Topological descriptors

+1

+2

+2

𝐺

𝐺′

Graph edit distance

Complete graph invariants:   equal for two graphs iif they are isomorphic

 → (Gartner 2003)  require exponential runtime
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Graph kernels (2/3): ℛ-convolution framework

▪ 𝑆(𝐺): set of parts/substructures of 𝐺

▪ 𝑘𝑝𝑎𝑟𝑡: kernel between individual parts

𝑘 𝐺, 𝐺′ ≔ ෍

𝑠∈𝒮 𝐺

෍

𝑠′∈𝒮 𝐺′

𝑘𝑝𝑎𝑟𝑡(𝑠, 𝑠′)
Nodes

Edges

Trees
CyclesShortest 

paths

…
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[Nikolentzos et al., 2021]

Checklist:

✓ continuous node attributes

Graph kernels (3/3): checklist



This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

24

[Nikolentzos et al., 2021]

Checklist:

✓ continuous node attributes

✓ no relying heavily on the graph 

structure

Graph kernels (3/3): checklist
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[Nikolentzos et al., 2021]

Checklist:

✓ continuous node attributes

✓ no relying heavily on the graph 

structure

✓ tractable

Graph kernels (3/3): checklist
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Checklist:

✓ continuous node attributes

✓ no relying heavily on the graph 

structure

✓ tractable

✓ positive definite

[Nikolentzos et al., 2021]

Graph kernels (3/3): checklist
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Sliced Wasserstein Weisfeiler-Lehman graph kernels

[CP, Da Veiga, Garnier, Staber, 2024]
Build a positive 

definite kernel 

between empirical 

measures

Embeddings of 

the graphs
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Weisfeiler-Lehman embeddings

Example from [Kriege et al., 2020]

𝐵

𝐴

𝐵

𝐴
𝐴

▪ WL relabeling (categorical case)

𝐷

𝐶

𝐸

𝐶
𝐶

𝐶
𝐶

𝐶

𝐷 𝐸

𝐻

𝐹

𝐼

𝐺
𝐺

𝐹
𝐺

𝐺

𝐻 𝐼

𝑙 𝑖+1 𝑣 = 𝐻𝑎𝑠ℎ 𝑙𝑖 𝑣 , 𝑙𝑖 𝑢  , 𝑢 ∈ 𝒩 𝑣

𝑋𝐺
(𝑖)

= 𝑙 𝑖 𝑣 , 𝑣 ∈ 𝑉𝐺  𝑋𝐺 = 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑋𝐺
(0)

, ⋯ , 𝑋𝐺
(𝐻)

) 
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Continuous Weisfeiler-Lehman embeddings

𝑎 𝑖+1 𝑣 =
1

2
𝑎 𝑖 𝑣 +

1

deg 𝑣
෍

𝑢∈𝒩 𝑣

𝑤 𝑣, 𝑢  𝑎 𝑖 𝑢

𝑋𝐺
(𝑖)

= 𝑎 𝑖 𝑣 , 𝑣 ∈ 𝑉𝐺  𝑋𝐺 = 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑋𝐺
0

, ⋯ , 𝑋𝐺
𝐻

) 

[Togninalli et al., 2019]

▪ WL relabeling (continuous case)
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Sliced Wasserstein Weisfeiler-Lehman graph kernels

[CP, Da Veiga, Garnier, Staber, 2024]

Continuous WL 

embeddings

Build a positive 

definite kernel 

between empirical 

measures

Embeddings of 

the graphs
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Wasserstein distance

Where: 

- 𝑠 ∈ 1, +∞ , 

- 𝒫2 ℝ𝑠 : probability measures on ℝ𝑠 with finite moments of 
order 2,

- Π 𝜇, 𝜈 = 𝜋 ∈ 𝒫2 ℝ𝑠 × ℝ𝑠 :  𝑃𝑟𝑜𝑗1 #𝜋 = 𝜇, 𝑃𝑟𝑜𝑗2 #𝜋 = 𝜈

𝒲2 𝜇, 𝜈 =  inf
𝛾∈Π 𝜇,𝜈

න

ℝ𝑠×ℝ𝑠

𝑥 − 𝑦 2𝑑𝛾 𝑥, 𝑦 , 

Wasserstein distance

𝜇

𝜈

 𝒪(𝒏𝟑𝐥𝐨𝒈(𝒏))

    Substitution kernels are not positive definite in dimension s ≥ 2
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Sliced Wasserstein distance

Sliced Wasserstein distance

✓ Complexity: scales as 𝒏 𝐥𝐨𝐠(𝒏)

   ✓ Positive definite substitution kernels

𝒮𝒲2 𝜇, 𝜈 = න

𝕊s−1 

𝒲2 𝜃#
∗𝜇, 𝜃#

∗𝜈 d𝜎(𝜃)

Where: 

- 𝕊𝑠−1 :  (𝑠 − 1)-dimensional unit sphere, 

- 𝜎 : uniform distribution on 𝕊𝑠−1 

- 𝜃#
∗𝜇 : push-forward measure of 𝜇 ∈ 𝒫2(ℝ𝑠) by 𝜃∗ ℝ𝑠 → ℝ

𝑥 ↦ 𝜃, 𝑥
 

[Bonneel et al. 2015]
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Sliced Wasserstein distance

Sliced Wasserstein distance

✓ Complexity: scales as 𝒏 𝐥𝐨𝐠(𝒏)

   ✓ Positive definite substitution kernels

𝒮𝒲2 𝜇, 𝜈 = න

𝕊s−1 

𝒲2 𝜃#
∗𝜇, 𝜃#

∗𝜈 d𝜎(𝜃)

Where: 

- 𝕊𝑠−1 :  (𝑠 − 1)-dimensional unit sphere, 

- 𝜎 : uniform distribution on 𝕊𝑠−1 

- 𝜃#
∗𝜇 : push-forward measure of 𝜇 ∈ 𝒫2(ℝ𝑠) by 𝜃∗ ℝ𝑠 → ℝ

𝑥 ↦ 𝜃, 𝑥
 

Quantile 
function

= න

0 

1

𝐹−1 𝜇 − 𝐹−1 𝜈 2 d𝑡

[Bonneel et al. 2015]
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Estimation of the Sliced Wasserstein distance (1/2)

𝒮𝒲2 𝜇, 𝜈 = න

𝕊s−1 

𝒲2 𝜃#
∗𝜇, 𝜃#

∗𝜈 d𝜎(𝜃) 𝒮𝒲2 𝜇, 𝜈 ≃
1

𝑃
෍

𝑝=1

𝑃

𝒲2 𝜃𝑝
∗

#
𝜇, 𝜃𝑝

∗
#

𝜈

1) Monte Carlo samples for the projections 𝑃 projections 𝜃1, ⋯ , 𝜃𝑃
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Estimation of the Sliced Wasserstein distance (2/2)

𝑄 quantile levels

𝜇 =
1

𝑛
෍

𝑖=1

𝑛

𝛿𝑥𝑖
 𝜈 =

1

𝑛
෍

𝑖=1

𝑛

𝛿𝑦𝑖

𝒲2 𝜇, 𝜈 =
1

𝑛
෍

𝑖=1

𝑛

|𝑥 𝑖 − 𝑦 𝑖  ቚ
2

A) If 𝜇 and 𝜈 have the 

same support size

B) If 𝜇 and 𝜈 have different 

support sizes

𝜇 =
1

𝑛
෍

𝑖=1

𝑛

𝛿𝑥𝑖
 𝜈 =

1

𝑛′ ෍

𝑖=1

𝑛′

𝛿𝑦𝑖

𝑊2 𝜇, 𝜈 ≃
1

𝑄
෍

𝑖=1

𝑄

𝑥 𝑖 − 𝑦 𝑖
𝑟

Approximation with 
𝑄 < max( 𝑛, 𝑛′) 

quantiles

2) Fixed quantiles

common to all inputs 
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Sliced Wasserstein Weisfeiler Lehman (SWWL)

෣𝒮𝒲2
2 𝜇𝐺 , 𝜇𝐺′ =

1

PQ
෍

p=1

P

෍

𝑞=1

𝑄

𝑢𝑞

𝜃𝑝
− 𝑢′

𝑞
𝜃

2

= 𝑈𝐺 − 𝑈𝐺′ 2
2

[CP, Da Veiga, Garnier, Staber, 2024]

𝜇𝐺: =
1

|𝑉|
෍

𝑖=1

𝑛

(𝐸𝐺)𝑖

𝑘𝑆𝑊𝑊𝐿 𝐺, 𝐺′ =  𝑒−𝜆 ෣𝒮𝒲2 𝜇𝐺,𝜇
𝐺′  

SWWL kernel

: continuous WL embedding of 𝐺

Distance substitution kernel

where 𝑢𝑞

𝜃𝑝
= 𝜃𝑝, 𝐸𝐺

𝑞

𝑈𝐺 = [𝑢1
𝜃1 , ⋯ , 𝑢𝑄

𝜃1 , ⋯ , 𝑢1
𝜃𝑃 , ⋯ , 𝑢𝑄

𝜃𝑃] 

Embeddings in ℝ𝑃𝑄
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Sliced Wasserstein Weisfeiler Lehman (SWWL)

𝐺

𝐺′

𝐸𝐺

𝐸𝐺′

2 31

WL iterations1 2 Projected Quantile Embeddings 3 RBF kernel

* Steps 1 and 2 can be done separately for each input graph

*
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Sliced Wasserstein Weisfeiler Lehman (SWWL)

෣𝒮𝒲2
2 𝜇𝐺 , 𝜇𝐺′ =

1

PQ
෍

p=1

P

෍

𝑞=1

𝑄

𝑢𝑞

𝜃𝑝
− 𝑢′

𝑞
𝜃

2

= 𝑈𝐺 − 𝑈𝐺′ 2
2

[CP, Da Veiga, Garnier, Staber, 2024]

𝜇𝐺: =
1

|𝑉|
෍

𝑖=1

𝑛

(𝐸𝐺)𝑖

𝑘𝑆𝑊𝑊𝐿 𝐺, 𝐺′ =  𝑒−𝜆 ෣𝒮𝒲2 𝜇𝐺,𝜇
𝐺′  

SWWL kernel

: continuous WL embedding of 𝐺

where 𝑢𝑞

𝜃𝑝
= 𝜃𝑝, 𝐸𝐺

𝑞

𝑈𝐺 = [𝑢1
𝜃1 , ⋯ , 𝑢𝑄

𝜃1 , ⋯ , 𝑢1
𝜃𝑃 , ⋯ , 𝑢𝑄

𝜃𝑃] 

𝑂  𝑁𝐻𝛿𝑛 +  𝑁𝑃 𝑛 (log 𝑛 + 𝐻)  +  𝑁2𝑃𝑄 

Projected Quantile 

Embeddings
WL iterations RBF kernel

N: number of graphs

n: average number of nodes

𝛿 average degree

P: number of projections

Q: number of quantiles

H: number of WL iterations

Complexity for the Gram matrix
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Sliced Wasserstein Weisfeiler-Lehman graph kernels

[CP, Da Veiga, Garnier, Staber, 2024]

Continuous WL 

embeddings

✓ Complexity: scales as 𝒏 𝐥𝐨𝐠(𝒏)

   ✓ Positive definite substitution kernels

Build a positive 

definite kernel 

between empirical 

measures

Sliced Wasserstein

Embeddings of 

the graphs
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Learning output fields/signals

𝒴 =  ራ

𝑥= 𝑉,𝐸,𝑤,𝐹 ∈𝒳

{𝑦: 𝑉 → ℝ}

Learn 𝑓 ∶ → from a train dataset  𝒟 = 𝑥 𝑖 , 𝑦 𝑖
𝑖=1,⋯,𝑁

𝒳  𝒴
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Learning output fields/signals

 Inputs can have different sizes, 
so do the outputs

 No natural ordering of the 
output scalar elements

 The number of output 
elements can be very large

𝒴 =  ራ

𝑥= 𝑉,𝐸,𝑤,𝐹 ∈𝒳

{𝑦: 𝑉 → ℝ}

Learn 𝑓 ∶ → from a train dataset  𝒟 = 𝑥 𝑖 , 𝑦 𝑖
𝑖=1,⋯,𝑁

𝒳  𝒴
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Related approaches

[Pfaff, 2020]

Graph Neural Networks

✓ Signal prediction

 No uncertainties

 Training time
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Related approaches

Multi/Functional Output GPs

[Pfaff, 2020]

Graph Neural Networks

✓ Signal prediction

 No uncertainties

 Training time

 No ordering of the output elements 

 Varying domains [Goovaerts, 1997]
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Related approaches

Multi/Functional Output GPs

[Pfaff, 2020]

Dimension reduction

[Kontolati, 2022]

Graph Neural Networks

✓ Signal prediction

 No uncertainties

 Training time

 No ordering of the output elements 

 Varying domains

 No ordering of the output elements

[Goovaerts, 1997]
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Related approaches

Multi/Functional Output GPs

Graph signal processing [Ortega, 2018]

[Pfaff, 2020]

Dimension reduction

[Kontolati, 2022]

Graph Neural Networks

✓ Signal prediction

 No uncertainties

 Training time

 No ordering of the output elements 

 Varying domains

 No ordering of the output elements

 Incomparable eigendecompositions 

[Goovaerts, 1997]
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Related approaches

Multi/Functional Output GPs

Graph signal processing [Ortega, 2018]

Mesh Morphing Gaussian Processes

[Pfaff, 2020]

Dimension reduction

[Kontolati, 2022]

[Casenave, 2024]

Graph Neural Networks

✓ Signal prediction

 No uncertainties

 Training time

 No ordering of the output elements 

 Varying domains

 No ordering of the output elements

 Incomparable eigendecompositions 

[Goovaerts, 1997]

✓ Prediction + uncertainties

 Specific to meshes + same topology

Morphing Finite element 

interpolation
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Express signals/fields in the same space?

Inputs Outputs

Same size + order

Transformed Outputs

1

Transform

=

=

=
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Wasserstein distance

Where: 

- 𝑠 ∈ 1, +∞ , 

- 𝒫2 ℝ𝑠 : probability measures on ℝ𝑠 with finite moments of 
order 2,

- Π 𝜇, 𝜈 = 𝜋 ∈ 𝒫2 ℝ𝑠 × ℝ𝑠 :  𝑃𝑟𝑜𝑗1 #𝜋 = 𝜇, 𝑃𝑟𝑜𝑗2 #𝜋 = 𝜈

𝒲2 𝜇, 𝜈 =  inf
𝛾∈Π 𝜇,𝜈

න

ℝ𝑠×ℝ𝑠

𝑥 − 𝑦 2𝑑𝛾 𝑥, 𝑦 , 

Wasserstein distance

𝜇

𝜈
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Wasserstein distance

Wasserstein distance (discrete case)

Where: 

- 

- 𝑈 𝑛, 𝑛′ = 𝑃 ∈ ℝ+
𝑛×𝑛′

: 𝑃𝑛′ =
1

𝑛
𝑛, 𝑃𝑛 =

1

𝑛′ 𝑛′

- 𝐶𝜇,𝜈 = 𝑥𝑖 − 𝑧𝑗
2

𝑖=1…𝑛, 𝑗=1…𝑛′

𝜇 =
1

𝑛
෍

𝑖=1

𝑛

𝛿𝑥𝑖
 𝜈 =

1

𝑛′ ෍

𝑖=1

𝑛′

𝛿𝑧𝑖

𝒲2 𝜇, 𝜈 =  𝑚𝑖𝑛
𝑃∈𝑈(𝑛,𝑛′)

𝐶𝜇,𝜈 , 𝑃 Transport plan

Cost matrix

𝜇

𝜈
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Wasserstein distance

Regularized Wasserstein distance

Entropic regularization

𝒲𝜆
2 𝜇, 𝜈 =  𝑚𝑖𝑛

𝑃∈𝑈(𝑛,𝑛′)
𝐶𝜇,𝜈 , 𝑃 − 𝜆𝐻(𝑃),     𝜆 > 0

𝑃𝜆 =  𝑎𝑟𝑔𝑚𝑖𝑛
𝑃∈𝑈(𝑛,𝑛′)

 𝐿𝜆 𝜇, 𝜈, 𝑃

𝐿𝜆 𝜇, 𝜈, 𝑃 = 𝐶𝜇,𝜈 , 𝑃 − 𝜆𝐻(𝑃)

Smoothed transport plan

1- Without regularization

𝜆 = 0

𝑃0

2- With regularization

𝜆 > 0

𝑃𝜆

✓ Smoothing of the transport plans

   ✓ Sinkhorn: 𝑂 𝑛2 log 𝑛

[Peyré & Cuturi, 2019]
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Transferring fields with transport plans

𝑃𝜆
(𝑖)

=  𝑎𝑟𝑔𝑚𝑖𝑛
𝑃∈ 𝑈(𝑛𝑖,𝑛𝑟𝑒𝑓)

 𝐿𝜆 𝜇𝑖 , 𝜇𝑟𝑒𝑓 , 𝑃 ∈ ℝ𝑛𝑖×𝑛𝑟𝑒𝑓

Part 1: getting transport plans (input space)

𝜇𝑟𝑒𝑓: reference measure of size 𝑛𝑟𝑒𝑓

𝜇𝑖 =
1

𝑛𝑖
෍

𝑗=1

𝑛𝑖

𝛿 𝜙𝑊𝐿 𝐺 𝑖
𝑗
 : WL embeddings of input graph 𝑖

𝑃𝜆
(1)

𝜇1

𝜇𝑟𝑒𝑓
𝑃𝜆

(𝑁)

𝜇𝑁
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Transferring fields with transport plans

𝑃𝜆
(𝑖)

=  𝑎𝑟𝑔𝑚𝑖𝑛
𝑃∈ 𝑈(𝑛𝑖,𝑛𝑟𝑒𝑓)

 𝐿𝜆 𝜇𝑖 , 𝜇𝑟𝑒𝑓 , 𝑃 ∈ ℝ𝑛𝑖×𝑛𝑟𝑒𝑓

Part 1: getting transport plans (input space)

𝑇(𝑖) = 𝑛𝑟𝑒𝑓𝑃𝜆
𝑖

⊤
 𝑦(𝑖) ∈ ℝ𝑛𝑟𝑒𝑓                 Transferred field

 ෤𝑦(𝑖) = 𝑛𝑖𝑃𝜆
𝑖

𝑇(𝑖) ∈ ℝ𝑛𝑖                     Reconstructed field

𝜇𝑟𝑒𝑓: reference measure of size 𝑛𝑟𝑒𝑓

𝜇𝑖 =
1

𝑛𝑖
෍

𝑗=1

𝑛𝑖

𝛿 𝜙𝑊𝐿 𝐺 𝑖
𝑗
 : WL embeddings of input graph 𝑖

Part 2: transferring output signals 

𝑃𝜆
(1)

𝜇1

𝜇𝑟𝑒𝑓
𝑃𝜆

(𝑁)

𝜇𝑁

𝑦(1)                 𝑦 𝑁

𝑇(1)                 𝑇(𝑁)
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How to choose the regularization parameter ?

Choose 𝜆 > 0 that minimizes the error (RRMSE) between 

- the train output fields and 

- the train reconstructed fields

Squared 

Error

True Reconstructed

Squared 

Error
…

Transferred
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How to choose a reference measure ?

1) Optimal transport barycenter:

Barycenter of all train measures
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How to choose a reference measure ?

1) Optimal transport barycenter:

Barycenter of all train measures Discretizations of manifolds
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How to choose a reference measure ?

2) Subsample from a train measure:

3) Uniform grid on a reference shape:

One train measure subsampled
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Express signals/fields in the same space?

Inputs Outputs Transformed Outputs

1

Transform

=

=

=

2

Reduce 

dimension

Size 𝑄Size 𝑛𝑟𝑒𝑓
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Dimension reduction (in practice)

Principal component analysis [Kontolati 2022]

𝑻 = (𝑇(1), ⋯ , 𝑇 𝑁 ) ∈ ℝ𝑁×𝑛𝑟𝑒𝑓                    ഥ𝑻 = 𝑻 centered

1

𝑁
ഥ𝑻⊤ഥ𝑻 = 𝐸𝐷𝑖𝑎𝑔(𝜆1, ⋯ , 𝜆𝑄)E⊤    

 𝜆1 ≤ ⋯ ≤ 𝜆𝑄 : eigenvalues

 E ∈ ℝ𝑛𝑟𝑒𝑓×𝑄: eigenvectors

𝑄 first PCA coefficients:  𝐶 = 𝑻𝐸 ∈ ℝ𝑁×𝑄 

PCA

Learn Q independent GPs 

using SWWL graph kernels for 

the inputs
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TOS-GP: Transported Output Signal Gaussian Processes
[CP, Da Veiga, Garnier, Staber, 2025]

Train

Test
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TOS-GP: Transported Output Signal Gaussian Processes
[CP, Da Veiga, Garnier, Staber, 2025]

Train

Test
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TOS-GP: Transported Output Signal Gaussian Processes
[CP, Da Veiga, Garnier, Staber, 2025]

Train

Test
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TOS-GP: Transported Output Signal Gaussian Processes
[CP, Da Veiga, Garnier, Staber, 2025]

Train

Test
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TOS-GP: Transported Output Signal Gaussian Processes
[CP, Da Veiga, Garnier, Staber, 2025]

Train

Test
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TOS-GP: Transported Output Signal Gaussian Processes
[CP, Da Veiga, Garnier, Staber, 2025]

Train

Test

Embarrassingly parallel steps



This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

69

TOS-GP: Transported Output Signal Gaussian Processes
[CP, Da Veiga, Garnier, Staber, 2025]

?

Train

Test
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TOS-GP: Transported Output Signal Gaussian Processes
[CP, Da Veiga, Garnier, Staber, 2025]

?

Train

Test
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TOS-GP: Transported Output Signal Gaussian Processes
[CP, Da Veiga, Garnier, Staber, 2025]

?

Train

Test

Regression model

Kernel 

Dimension reduction

Auto-encoder

PCA

Wavelets

SWWL, WWL, Propagation, FGW, …



I) Scalar outputs
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2- Graph kernels

3- SWWL graph kernel

1- Problem statement

2- Related approaches

3- TOS-GP

4- Experiments

II) Signal outputs
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Datasets

1000+200 29773

Dataset name Train/Test Nodes Output fields

Rotor37 1000 / 200 ~30000

Tensile2d 500 / 200 ~9500

Multiscale 764 / 376 ~4600

Temperature 

(T)

H displacement 

(U)
Shear stress 

(σ12)

H displacement

(U)
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TOS-GP: regression scores

Small Medium Large

- The error decreases when the size of the reference 

increases

- It remains close to a constant beyond 1000 points

- The choice of the reference type has little importance 

for this problem

- The choice of the regularization parameter is critical
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TOS-GP: uncertainty propagation (field 𝜎12)

Ground truth Prediction 

(transferred 

space) 

Posterior std

(transferred 

space)

Posterior std
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TOS-GP: predictions and uncertainties

Ground truth Prediction Absolute error Posterior std
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TOS-GP: regression scores

𝑅𝑅𝑀𝑆𝐸𝑖
2 𝑦 𝑖 , ො𝑦 𝑖 =

𝑦(𝑖) − ො𝑦 𝑖
2

2

𝑛∗𝑖 𝑦 𝑖
∞

2  

𝑅𝑅𝑀𝑆𝐸2 𝑦 𝑖
𝑖=1,⋯,𝑁∗

, ො𝑦 𝑖
𝑖=1,⋯,𝑁∗

=
1

𝑁∗
෍

𝑖=1

𝑁∗ 

𝑅𝑅𝑀𝑆𝐸𝑖
2 𝑦 𝑖 , ො𝑦 𝑖

RRMSE 

(10 exp)
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Varying topologies: 2D_multiscale_hyperelasticity

Squared-exp using the MMD distance 

between the centers of the pores [Li et al. 2020]

Auto-encoder with convolutional 

and 2D discrete Fourier layers 

Dimension reduction

Auto-encoder

PCA

Wavelets

Regression model

Kernel 

SWWL, WWL, Propagation, FGW, …
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Varying topologies: 2D_multiscale_hyperelasticity

Ground truth Prediction Absolute errorPrediction 

(transferred space)
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Varying topologies: 2D_multiscale_hyperelasticity

Ground truth Prediction

(TOS-GP)

Prediction

(MGN)
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Varying topologies: 2D_multiscale_hyperelasticity

Ground truth Prediction

(TOS-GP)

Prediction

(MGN)
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Conclusion

▪ SWWL graph kernel

✓ Positive definite

✓ Can consider very large graphs

Inputs = Graphs, Outputs = Scalars

Inputs = Graphs, Outputs = Signals

▪ Classical techniques impossible to use directly

MOGP, OVGP, GSP, dimension reduction, …

▪ TOS-GP: Transported Output Signal GP

Optimal transport + Dimension reduction

✓ Flexible (change kernel/dimension reduction)

✓ No assumption on the data (mesh/topology) 

✓ Few hyperparameters: 𝜆, ref. measure, WL iter.

▪ Future work

Consider more discontinuous signals

Optimal transport variants
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Gaussian process regression

▪ 𝒳 = 𝒢 is a set of  graphs.

▪  

▪ How to choose  k ?

Test locations: 

𝑮∗ =  (𝐺𝑖
∗)𝑖=1

𝑁∗
    

Predictions? 𝒇∗ = (𝑓(𝐺𝑖
∗))𝑖=1

𝑁∗
 ?

𝑲, 𝑲∗∗, 𝑲∗ : train, test, train/test Gram 

matrices

𝒚
𝒇∗

∼ 𝒩 0,
𝑲 + 𝜎2𝐼 𝑲∗

𝑇

𝑲∗ 𝑲∗∗
 

Noisy observations:     

y = 𝑦𝑖 𝑖=1
𝑁      with yi = 𝑓 𝐺𝑖 + 𝜖𝑖 where 

𝜖𝑖~𝒩 0, 𝜎2 ,  𝑓: 𝒳 → ℝ

Gaussian prior over functions:

 𝑓 ~ 𝒢𝒫 0, 𝑘  where 𝑘: 𝒢 × 𝒢 → ℝ is a 

symmetric positive definite kernel

Posterior distribution: 

𝒇∗ | 𝑮, 𝒚, 𝑮∗ ~ 𝒩( ഥ𝒎, ഥ𝚺)

predictive mean

uncertainties

ഥ𝒎 = 𝑲∗ 𝑲 + 𝜎2𝐼 −1𝒚

ഥ𝚺 = 𝑲∗∗ − 𝑲∗ 𝑲 + 𝜎2𝐼 −1𝑲∗
𝑇𝑘 = ? , 
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MMD subsampling procedure

Maximum mean discrepancy:

𝑀𝑀𝐷𝑘 𝜇, 𝜈 = 𝔼𝑥∼𝜇,𝑥′∼𝜇 𝑘 𝑥, 𝑥′ +𝔼𝑦∼𝜈,𝑦′∼𝜈 𝑘 𝑦, 𝑦′ − 2𝔼𝑥∼𝜇,𝑦∼𝜈[𝑘(𝑥, 𝑦)] 

Input:  𝜇 a given measure in the train set.

Output: 𝜈 the subsampled measure.

𝜈 =  ∅
At each iteration, choose the point 𝑥 in the 

support of 𝜇 that minimizes the MMD 

between 𝜇 and 𝜈 + 𝛿𝑥, and update 𝜈.

𝜇

𝜈

…
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