Some industrialized approaches in physics-based machine learning

Raphaël CARPINTERO PEREZ

Abbas KABALAN

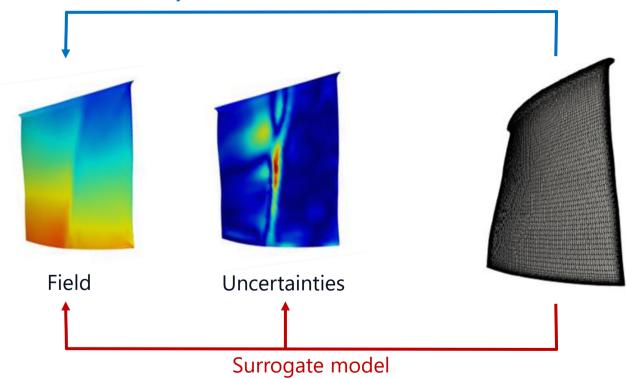
20/06/2025 SAFRAN

Objectives

Turbine blades

Objectives

Costly numerical simulation (~4 hours)



Turbine blades

Summary

- Learning signals defined on graphs with optimal transport and Gaussian process regression
- Raphaël CARPINTERO PEREZ

- Sébastien DA VFIGA
- Josselin GARNIER
- **Brian STABER**

Abbas KABALAN

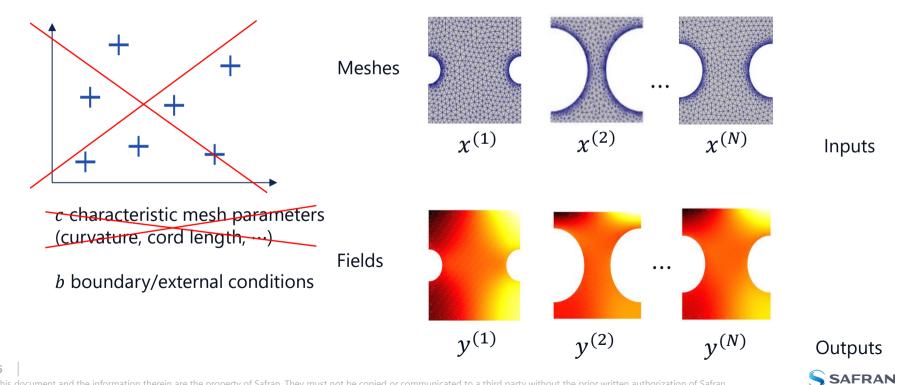
- Virginie EHRLACHER
- Alexandre ERN

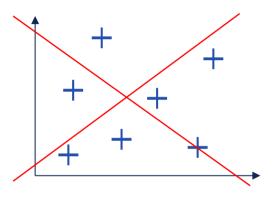
- Fabien CASENAVE
- Felipe BORDEU

Step 1: Generate a design of experiments

b boundary/external conditions

Step 2: Create the meshes





c characteristic mesh parameters (curvature, cord length, ···)

b boundary/external conditions

Meshes

Graphs

 $\chi^{(1)}$

 $\chi^{(2)}$

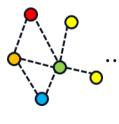
Inputs

 $\in \mathcal{X}$

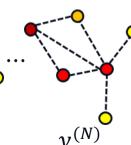
Step 3: Finite-element solver



 $v^{(1)}$



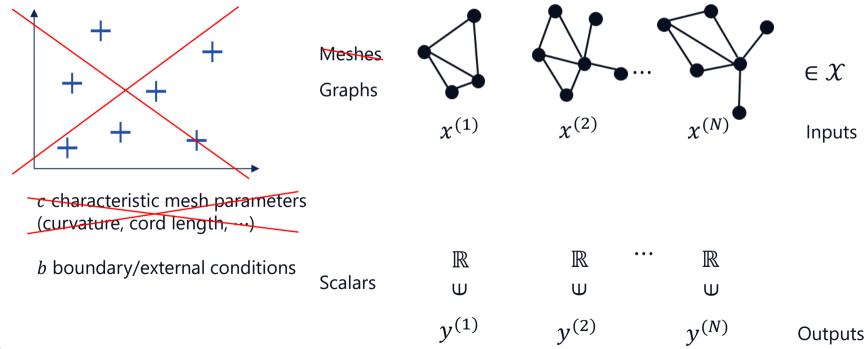
 $v^{(2)}$



Outputs

Fields

Signals





I) Scalar outputs

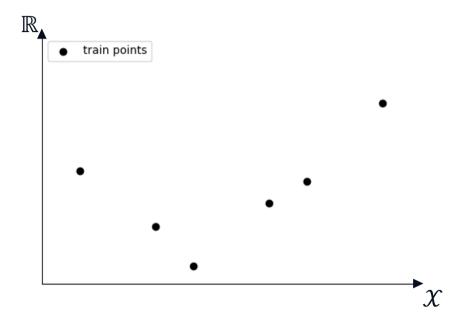
- 1- Gaussian process regression
- 2- Graph kernels
- 3- SWWL graph kernel

II) Signal outputs

- 1- Problem statement
- 2- Related approaches
- 3- TOS-GP
- 4- Experiments

Regression

Objective: Learn $f: \mathcal{X} \to \mathbb{R}$ from a set of (noisy) observations $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N$

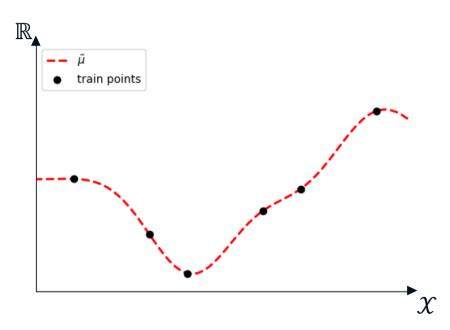


Regression

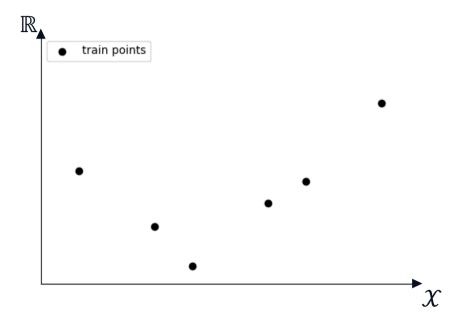
Objective: Learn $f: \mathcal{X} \to \mathbb{R}$ from a set of (noisy) observations $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N$

$$f^* \in \underset{f \in \mathcal{H}}{\operatorname{argmin}} \sum_{i=1}^{N} (y_i - f(x_i))^2 + \frac{\lambda}{2} ||f||_{\mathcal{H}}^2$$

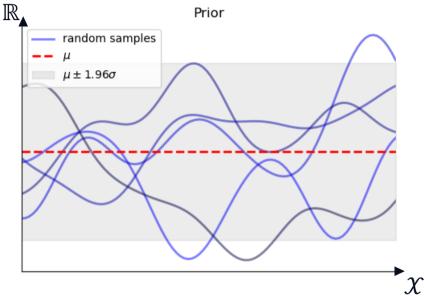
Minimize a penalized loss function (e.g. quadratic) on the train set

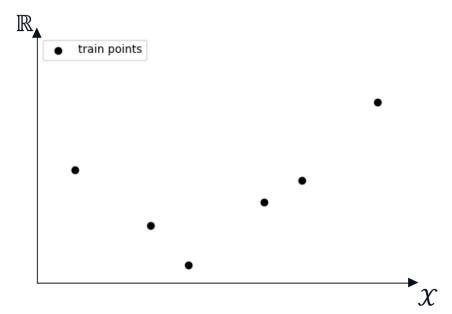


Objective: Learn $f: \mathcal{X} \to \mathbb{R}$ from a set of (noisy) observations $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N$



Objective: Learn $f: \mathcal{X} \to \mathbb{R}$ from a set of (noisy) observations $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N$

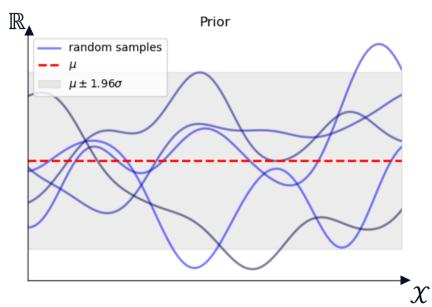




 $f \sim \mathcal{GP}(\mu, k)$ where $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is a symmetric **positive definite kernel**

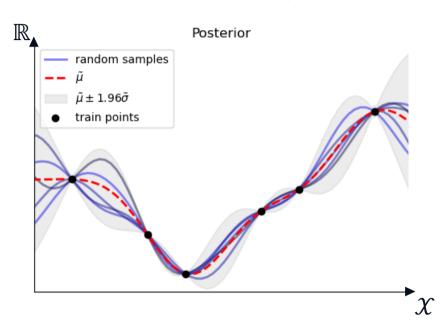
$$\sigma(x) = \sqrt{k(x, x)}$$

Objective: Learn $f: \mathcal{X} \to \mathbb{R}$ from a set of (noisy) observations $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N$



 $f \sim \mathcal{GP}(\mu, k)$ where $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is a symmetric **positive definite kernel**

$$\sigma(x) = \sqrt{k(x, x)}$$

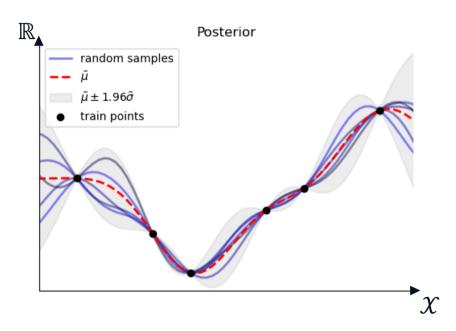


$$f \mid \mathcal{D} \sim \mathcal{GP}(\tilde{\mu}, \tilde{k})$$

Objective: Learn $f: \mathcal{X} \to \mathbb{R}$ from a set of (noisy) observations $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N$

Choice of the kernel $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$?

When
$$\mathcal{X} = \mathbb{R}^d$$
:
$$k(x, x') = e^{-\lambda \|x - x'\|^2} \quad (RBF)$$



$$f \mid \mathcal{D} \sim \mathcal{GP}(\tilde{\mu}, \tilde{k})$$

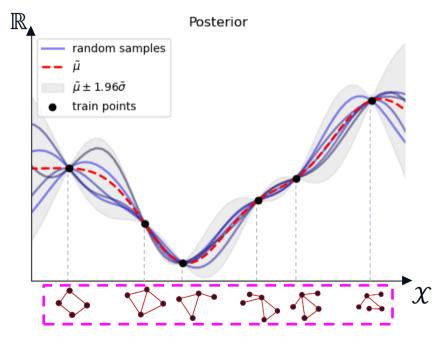
Objective: Learn $f: \mathcal{X} \to \mathbb{R}$ from a set of (noisy) observations $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N$

Choice of the kernel $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$?

When
$$\mathcal{X} = \mathbb{R}^d$$
:
$$k(x, x') = e^{-\lambda \|x - x'\|^2} \quad (RBF)$$

When $\mathcal{X} = \mathcal{G}$ is a space of graphs:

$$k \pmod{9} = ?$$



$$f \mid \mathcal{D} \sim \mathcal{GP}(\tilde{\mu}, \tilde{k})$$

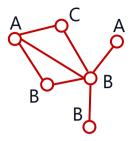
I) Scalar outputs

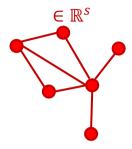
- 1- Gaussian process regression
- 2- Graph kernels
- 3- SWWL graph kernel

II) Signal outputs

- 1- Problem statement
- 2- Related approaches
- 3- TOS-GP
- 4- Experiments

What is a graph?



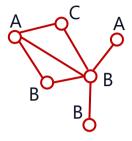


Case 1 : Vertices + Edges

Case 2 : Vertices + Edges + Node labels

Case 3 : Vertices + Edges + Node attributes

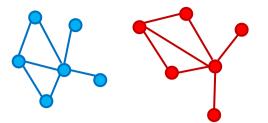
What is a graph?



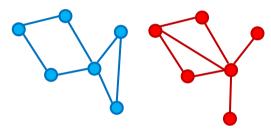
Case 1 : Vertices + Edges

Case 2 : Vertices + Edges + Node labels

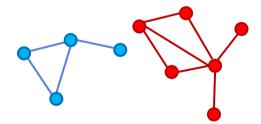
Case 3 : Vertices + Edges + Node attributes



Case 3A: Fixed structure -> signal

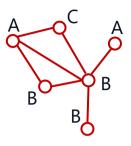


Case 3B: Fixed number of nodes



Case 3C: Varying number of nodes + structure + attributes

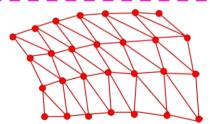
What is a graph?



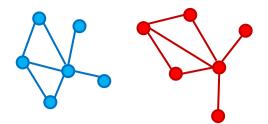
Case 1 : Vertices + Edges

Case 2 : Vertices + Edges + Node labels

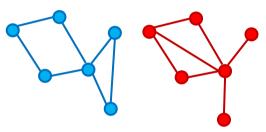
Case 3 : Vertices + Edges + Node attributes



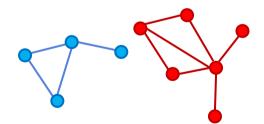
Case 3C+: Varying number of nodes + structure + attributes + large-scale + sparse



Case 3A: Fixed structure -> signal



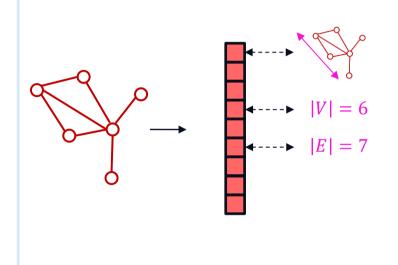
Case 3B: Fixed number of nodes

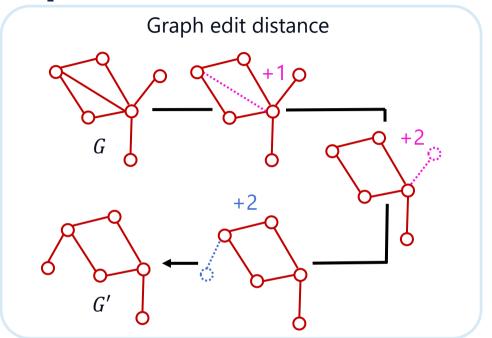


Case 3C: Varying number of nodes + structure + attributes

Graph kernels (1/3): Early attempts

Invariants / Topological descriptors





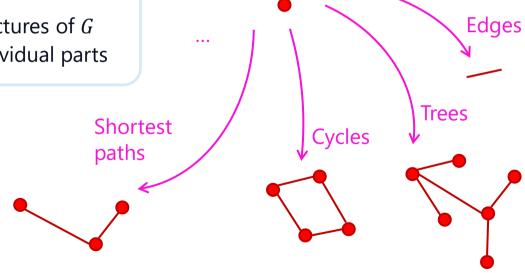
Complete graph invariants: equal for two graphs iif they are isomorphic → (Gartner 2003) require exponential runtime

Graph kernels (2/3): \mathcal{R} -convolution framework

$$k(G,G') \coloneqq \sum_{s \in \mathcal{S}(G)} \sum_{s' \in \mathcal{S}(G')} k_{part}(s,s')$$

• S(G): set of parts/substructures of G

• k_{part} : kernel between individual parts



Nodes

Checklist:

✓ continuous node attributes

Graph Kernel	Exp. ϕ	Node Labels	Node Attributes	Туре	Complexity
Vertex Histogram	✓	✓	Х	R-convolution	$\mathcal{O}(n)$
Edge Histogram	✓	✓	×	R-convolution	$\mathcal{O}(m)$
Random Walk	χ [†]	✓	1	R-convolution	$\mathcal{O}(n^3)$
Subtree	×	✓	1	R-convolution	$\mathcal{O}(n^2 4^{deg^*}h)$
Cyclic Pattern	✓	✓	×	intersection	$\mathcal{O}((c+2)n+2m)$
Shortest Path	χ [†]	✓	✓	R-convolution	$\mathcal{O}(n^4)$
Graphlet	✓	X	×	R-convolution	$\mathcal{O}(n^k)$
Weisfeiler-Lehman Subtree	✓	✓	×	R-convolution	$\mathcal{O}(hm)$
Neighborhood Hash	✓	✓	×	intersection	$\mathcal{O}(hm)$
Neighborhood Subgraph Pairwise Distance	✓	✓	×	R-convolution	$\mathcal{O}(n^2 m \log(m))$
Lovász ϑ	✓	×	×	R-convolution	$\mathcal{O}(n(s+\frac{nm}{\epsilon})+s^2)$
$SVM-\vartheta$	✓	×	×	R-convolution	$\mathcal{O}(n(s+n^2)+s^2)$
Ordered Decomposition DAGs	✓	✓	×	R-convolution	$\mathcal{O}(n \log n)$
Pyramid Match	×	✓	×	assignment	$\mathcal{O}(ndL)$
Weisfeiler-Lehman Optimal Assignment	Х	1	Х	assignment	$\mathcal{O}(hm)$
Subgraph Matching	×	✓	1	R-convolution	$\mathcal{O}(kn^{k+1})$
GraphHopper	×	✓	1	R-convolution	$\mathcal{O}(n^4)$
Graph Invariant Kernels	×	✓	✓	R-convolution	$\mathcal{O}(n^6)$
Propagation	1	✓	✓	R-convolution	$\mathcal{O}(hm)$
Multiscale Laplacian	×	✓	1	R-convolution	$\mathcal{O}(n^5h)$

Checklist:

- ✓ continuous node attributes
- ✓ no relying heavily on the graph structure

Graph Kernel	Exp. ϕ	Node Labels	Node Attributes	Туре	Complexity
Vertex Histogram	✓	✓	Х	R-convolution	$\mathcal{O}(n)$
Edge Histogram	✓	✓	×	R-convolution	$\mathcal{O}(m)$
Random Walk	χ [†]	✓	✓	R-convolution	$\mathcal{O}(n^3)$
Subtree	X	✓	✓	R-convolution	$\mathcal{O}(n^24^{deg^*}h)$
Cyclic Pattern	✓	✓	×	intersection	$\mathcal{O}((c+2)n+2m)$
Shortest Path	X †	✓	✓	R-convolution	$\mathcal{O}(n^4)$
Graphlet	✓	×	×	R-convolution	$\mathcal{O}(n^k)$
Weisfeiler-Lehman Subtree	✓	✓	×	R-convolution	$\mathcal{O}(hm)$
Neighborhood Hash	✓	✓	×	intersection	$\mathcal{O}(hm)$
Neighborhood Subgraph Pairwise Distance	✓	✓	×	R-convolution	$\mathcal{O}(n^2 m \log(m))$
Lovász ϑ	✓	×	×	R-convolution	$\mathcal{O}(n(s+\frac{nm}{\epsilon})+s^2)$
$SVM-\vartheta$	✓	×	×	R-convolution	$\mathcal{O}(n(s+n^2)+s^2)$
Ordered Decomposition DAGs	✓	✓	×	R-convolution	$\mathcal{O}(n \log n)$
Pyramid Match	×	✓	×	assignment	$\mathcal{O}(ndL)$
Weisfeiler-Lehman Optimal Assignment	Х	✓	X	assignment	$\mathcal{O}(hm)$
Subgraph Matching	X	✓	✓	R-convolution	$\mathcal{O}(kn^{k+1})$
GraphHopper	×	✓	✓	R-convolution	$\mathcal{O}(n^4)$
Graph Invariant Kernels	X	✓	✓	R-convolution	$\mathcal{O}(n^6)$
Propagation	✓	✓	✓	R-convolution	$\mathcal{O}(hm)$
Multiscale Laplacian	×	✓	✓	R-convolution	$\mathcal{O}(n^5h)$

Checklist:

- ✓ continuous node attributes
- ✓ no relying heavily on the graph structure
- ✓ tractable

Graph Kernel	Exp. ϕ	Node Labels	Node Attributes	Туре	Complexity
Vertex Histogram	1	✓	Х	R-convolution	$\mathcal{O}(n)$
Edge Histogram	1	✓	×	R-convolution	$\mathcal{O}(m)$
Random Walk	X [†]	✓	✓	R-convolution	$\mathcal{O}(n^3)$
Subtree	X	✓	✓	R-convolution	$\mathcal{O}(n^24^{deg^*}h)$
Cyclic Pattern	1	✓	×	intersection	$\mathcal{O}((c+2)n+2m)$
Shortest Path	χ [†]	✓	✓	R-convolution	$\mathcal{O}(n^4)$
Graphlet	1	X	×	R-convolution	$\mathcal{O}(n^k)$
Weisfeiler-Lehman Subtree	1	✓	×	R-convolution	$\mathcal{O}(hm)$
Neighborhood Hash	1	✓	×	intersection	$\mathcal{O}(hm)$
Neighborhood Subgraph Pairwise Distance	1	✓	×	R-convolution	$\mathcal{O}(n^2 m \log(m))$
Lovász ϑ	1	X	×	R-convolution	$\mathcal{O}(n(s+\frac{nm}{\epsilon})+s^2)$
$SVM-\vartheta$	1	X	×	R-convolution	$\mathcal{O}(n(s+n^2)+s^2)$
Ordered Decomposition DAGs	1	✓	×	R-convolution	$\mathcal{O}(n \log n)$
Pyramid Match	X	✓	×	assignment	$\mathcal{O}(ndL)$
Weisfeiler-Lehman Optimal Assignment	Х	✓	Х	assignment	$\mathcal{O}(hm)$
Subgraph Matching	Х	✓	✓	R-convolution	$\mathcal{O}(kn^{k+1})$
GraphHopper	X	✓	/	R-convolution	$\mathcal{O}(n^4)$
Graph Invariant Kernels	X	✓	/	R-convolution	$\mathcal{O}(n^6)$
Propagation	1	✓	✓	R-convolution	$\mathcal{O}(hm)$
Multiscale Laplacian	Х	✓	1	R-convolution	$\mathcal{O}(n^5h)$

Checklist:

- ✓ continuous node attributes
- ✓ no relying heavily on the graph structure
- √ tractable
- ✓ positive definite

Graph Kernel	Exp. ϕ	Node Labels	Node Attributes	Туре	Complexity
Vertex Histogram	✓	✓	×	R-convolution	$\mathcal{O}(n)$
Edge Histogram	✓	✓	×	R-convolution	$\mathcal{O}(m)$
Random Walk	X †	✓	✓	R-convolution	$\mathcal{O}(n^3)$
Subtree	×	✓	✓	R-convolution	$\mathcal{O}(n^24^{deg^*}h)$
Cyclic Pattern	✓	✓	×	intersection	$\mathcal{O}((c+2)n+2m)$
Shortest Path	X †	✓	✓	R-convolution	$\mathcal{O}(n^4)$
Graphlet	✓	×	×	R-convolution	$\mathcal{O}(n^k)$
Weisfeiler-Lehman Subtree	✓	✓	×	R-convolution	$\mathcal{O}(hm)$
Neighborhood Hash	✓	✓	×	intersection	$\mathcal{O}(hm)$
Neighborhood Subgraph Pairwise Distance	✓	✓	×	R-convolution	$\mathcal{O}(n^2 m \log(m))$
Lovász ϑ	✓	×	×	R-convolution	$\mathcal{O}(n(s+\frac{nm}{\epsilon})+s^2)$
$SVM-\vartheta$	✓	X	×	R-convolution	$\mathcal{O}(n(s+n^2)+s^2)$
Ordered Decomposition DAGs	✓	✓	×	R-convolution	$\mathcal{O}(n \log n)$
Pyramid Match	×	✓	×	assignment	$\mathcal{O}(ndL)$
Weisfeiler-Lehman Optimal Assignment	×	✓	×	assignment	$\mathcal{O}(hm)$
Subgraph Matching	×	✓	✓	R-convolution	$\mathcal{O}(kn^{k+1})$
GraphHopper	×	✓	✓	R-convolution	$\mathcal{O}(n^4)$
Graph Invariant Kernels	×	✓	✓	R-convolution	$\mathcal{O}(n^6)$
Propagation	1	✓	✓	R-convolution	$\mathcal{O}(hm)$
Multiscale Laplacian	Х	✓	✓	R-convolution	$\mathcal{O}(n^5h)$

I) Scalar outputs

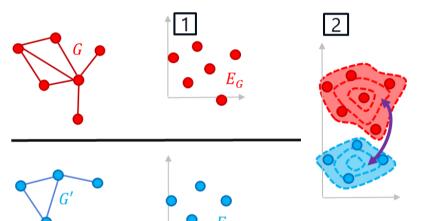
- 1- Gaussian process regression
- 2- Graph kernels
- 3- SWWL graph kernel

II) Signal outputs

- 1- Problem statement
- 2- Related approaches
- 3- TOS-GP
- 4- Experiments

Sliced Wasserstein Weisfeiler-Lehman graph kernels

[CP, Da Veiga, Garnier, Staber, 2024]



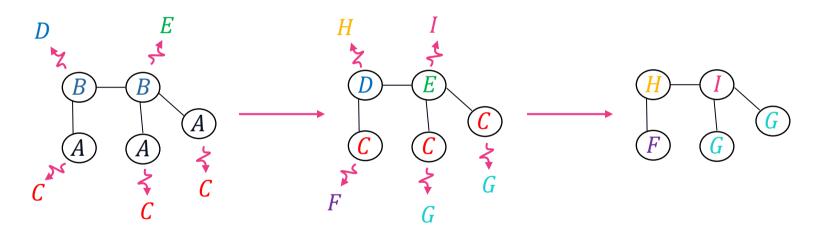
1 Embeddings of the graphs

Build a positive definite kernel between empirical measures

Weisfeiler-Lehman embeddings

Example from [Kriege et al., 2020]

WL relabeling (categorical case)



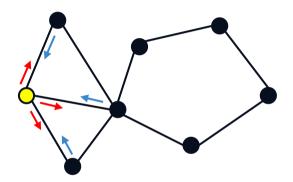
$$l^{(i+1)}(v) = Hash(l^{i}(v), \{l^{i}(u), u \in \mathcal{N}(v)\})$$

$$X_{G}^{(i)} = [l^{(i)}(v), v \in V_{G}] \qquad X_{G} = Concatenate(X_{G}^{(0)}, \dots, X_{G}^{(H)})$$

Continuous Weisfeiler-Lehman embeddings

[Togninalli et al., 2019]

WL relabeling (continuous case)

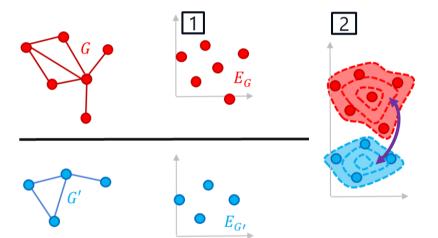


$$a^{(i+1)}(v) = \frac{1}{2} \left(a^{(i)}(v) + \frac{1}{\deg(v)} \sum_{u \in \mathcal{N}(v)} w(v, u) \ a^{(i)}(u) \right)$$

$$X_G^{(i)} = \left[a^{(i)}(v), v \in V_G \right] \qquad X_G = Concatenate(X_G^{(0)}, \dots, X_G^{(H)})$$

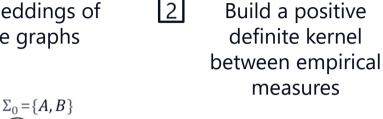
Sliced Wasserstein Weisfeiler-Lehman graph kernels

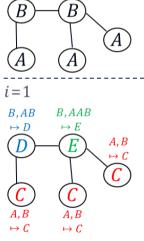
[CP, Da Veiga, Garnier, Staber, 2024]



1 Embeddings of the graphs

i=0





Continuous WL embeddings

Wasserstein distance

Wasserstein distance

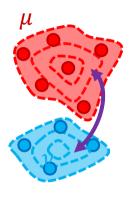
$$\mathcal{W}^{2}(\mu,\nu) = \inf_{\gamma \in \Pi(\mu,\nu)} \int_{\mathbb{R}^{S} \times \mathbb{R}^{S}} ||x - y||^{2} d\gamma(x,y),$$

Where:

- $-s \in [1, +\infty),$
- $\mathcal{P}_2(\mathbb{R}^s)$: probability measures on \mathbb{R}^s with finite moments of order 2,

$$-\Pi(\mu,\nu) = \{ \pi \in \mathcal{P}_2(\mathbb{R}^s \times \mathbb{R}^s) : (Proj_1)_{\#\pi} = \mu, (Proj_2)_{\#\pi} = \nu \}$$

- $\mathcal{L} \mathcal{O}(n^3 \log(n))$
- \star Substitution kernels are not positive definite in dimension s ≥ 2



Sliced Wasserstein distance

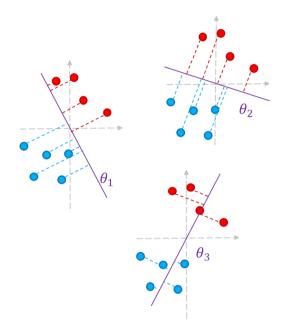
Sliced Wasserstein distance

[Bonneel et al. 2015]

$$\mathcal{SW}^{2}(\mu,\nu) = \int_{\mathbb{S}^{s-1}} \mathcal{W}^{2}(\theta_{\#}^{*}\mu,\theta_{\#}^{*}\nu) d\sigma(\theta)$$

Where:

- \mathbb{S}^{s-1} : (s-1)-dimensional unit sphere,
- σ : uniform distribution on \mathbb{S}^{s-1}
- $\theta_{\#}^*\mu$: push-forward measure of $\mu \in \mathcal{P}_2(\mathbb{R}^s)$ by $\theta^* \begin{pmatrix} \mathbb{R}^s \to \mathbb{R} \\ \chi \mapsto \langle \theta, \chi \rangle \end{pmatrix}$



- ✓ Complexity: scales as $n \log(n)$
- ✓ Positive definite substitution kernels

Sliced Wasserstein distance

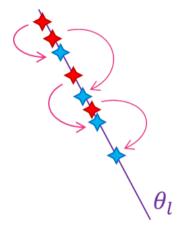
Sliced Wasserstein distance

[Bonneel et al. 2015]

$$W^{2}(\theta_{\#}^{*}\mu, \theta_{\#}^{*}\nu) = \int_{0}^{1} |F^{-1}(\mu) - F^{-1}(\nu)|^{2} dt$$
Quantile function

Where:

- \mathbb{S}^{s-1} : (s-1)-dimensional unit sphere,
- σ : uniform distribution on \mathbb{S}^{s-1}
- $\theta_{\#}^*\mu$: push-forward measure of $\mu \in \mathcal{P}_2(\mathbb{R}^s)$ by $\theta^* \begin{pmatrix} \mathbb{R}^s \to \mathbb{R} \\ \chi \mapsto \langle \theta, \chi \rangle \end{pmatrix}$



- ✓ Complexity: scales as $n \log(n)$
- ✓ Positive definite substitution kernels

Estimation of the Sliced Wasserstein distance (1/2)

1) Monte Carlo samples for the projections

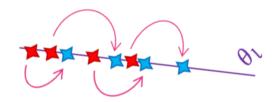
P projections $\theta_1, \dots, \theta_P$

$$\mathcal{SW}^{2}(\mu,\nu) = \int_{\mathbb{S}^{s-1}} \mathcal{W}^{2}(\theta_{\#}^{*}\mu,\theta_{\#}^{*}\nu)d\sigma(\theta) \qquad \qquad \mathcal{SW}^{2}(\mu,\nu) \simeq \frac{1}{p} \sum_{p=1}^{p} \mathcal{W}^{2}\left(\left(\theta_{p}^{*}\right)_{\#}\mu,\left(\theta_{p}^{*}\right)_{\#}\nu\right)$$

Estimation of the Sliced Wasserstein distance (2/2)

2) Fixed quantiles

A) If μ and ν have the same support size

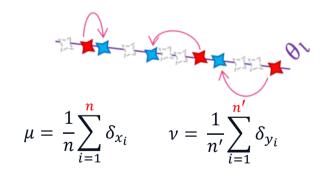


$$\mu = \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i} \qquad \nu = \frac{1}{n} \sum_{i=1}^{n} \delta_{y_i}$$

$$W^{2}(\mu,\nu) = \frac{1}{n} \sum_{i=1}^{n} |x_{(i)} - y_{(i)}|^{2}$$

B) If μ and ν have different support sizes

Q quantile levels common to all inputs



$$W^{2}(\mu, \nu) \simeq \frac{1}{Q} \sum_{i=1}^{Q} |x_{(i)} - y_{(i)}|^{r}$$
 Approximation with $Q < \max(n, n')$ quantiles

quantiles

Sliced Wasserstein Weisfeiler Lehman (SWWL)

SWWL kernel

[CP, Da Veiga, Garnier, Staber, 2024]

$$\mu_G := \frac{1}{|V|} \sum_{i=1}^{n} (E_G)_i$$
 : continuous WL embedding of G

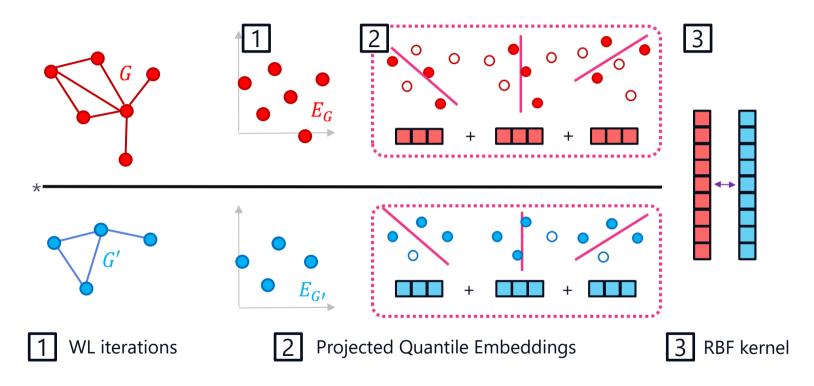
$$k_{SWWL}(G, G') = e^{-\lambda \widehat{SW}^2(\mu_G, \mu_{G'})}$$

Distance substitution kernel

$$\widehat{\mathcal{SW}_2^2}(\mu_G,\mu_{G'}) = \frac{1}{\text{PQ}} \sum_{\text{p=1}}^{\text{P}} \sum_{q=1}^{Q} \left| u_q^{\theta_p} - u_q'^{\theta} \right|^2 = \|U_G - U_{G'}\|_2^2 \qquad \text{where } u_q^{\theta_p} = \left\langle \theta_p, E_G \right\rangle_{(q)} \\ U_G = [u_1^{\theta_1}, \cdots, u_Q^{\theta_1}, \cdots, u_1^{\theta_p}, \cdots, u_Q^{\theta_p}]$$

Embeddings in \mathbb{R}^{PQ}

Sliced Wasserstein Weisfeiler Lehman (SWWL)



^{*} Steps 1 and 2 can be done separately for each input graph

Sliced Wasserstein Weisfeiler Lehman (SWWL)

SWWI kernel

 $\mu_G := \frac{1}{|V|} \sum_{i=1}^{n} (E_G)_i$: continuous WL embedding of G

$$k_{SWWL}(G,G') = e^{-\lambda \widehat{SW}^2(\mu_G,\mu_{G'})}$$

$$\widehat{\mathcal{SW}_2^2}(\mu_G,\mu_{G'}) = \frac{1}{\text{PQ}} \sum_{p=1}^{P} \sum_{q=1}^{Q} \left| u_q^{\theta_p} - u_q'^{\theta} \right|^2 = \|U_G - U_{G'}\|_2^2 \qquad \text{where } u_q^{\theta_p} = \left\langle \theta_p, E_G \right\rangle_{(q)} \\ U_G = [u_1^{\theta_1}, \cdots, u_0^{\theta_1}, \cdots, u_1^{\theta_p}, \cdots, u_0^{\theta_p}]$$

[CP, Da Veiga, Garnier, Staber, 2024]

where
$$u_q^{ heta_p} = \left< heta_p, E_G
ight>_{(q)}$$

$$U_G = [u_1^{ heta_1}, \cdots, u_Q^{ heta_1}, \cdots, u_1^{ heta_P}, \cdots, u_Q^{ heta_P}]$$

Complexity for the Gram matrix

$$O(NH\delta n + NP n (\log n + H) + N^2 PQ)$$

WL iterations Projected Quantile **Embeddings**

RBF kernel

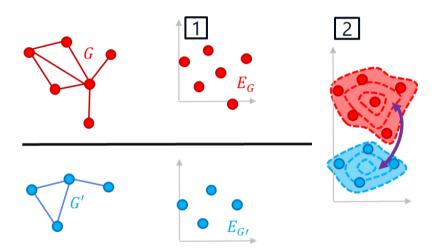
N: number of graphs n: average number of nodes δ average degree P: number of projections Q: number of quantiles

H: number of WL iterations

SAFRAN

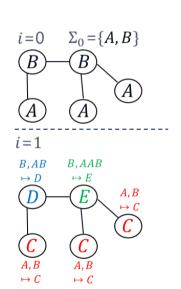
Sliced Wasserstein Weisfeiler-Lehman graph kernels

[CP, Da Veiga, Garnier, Staber, 2024]



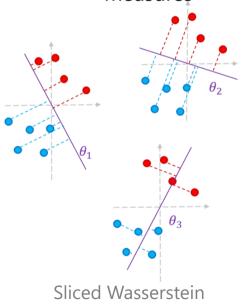
- ✓ Complexity: scales as $n \log(n)$
- ✓ Positive definite substitution kernels

1 Embeddings of the graphs



Continuous WL embeddings

Build a positive definite kernel between empirical measures



I) Scalar outputs

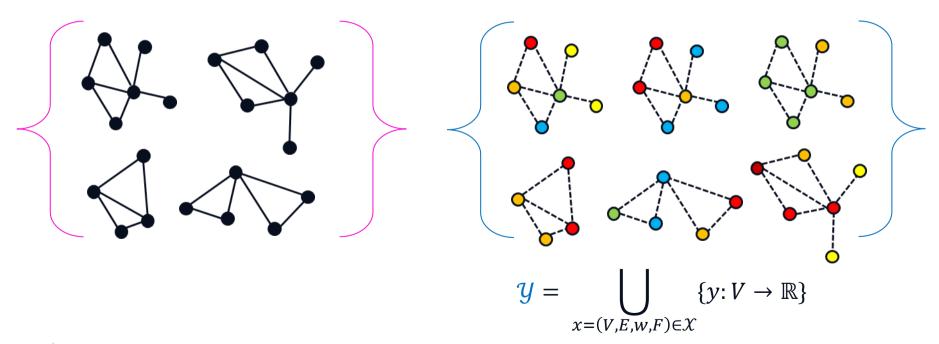
- 1- Gaussian process regression
- 2- Graph kernels
- 3- SWWL graph kernel

II) Signal outputs

- 1- Problem statement
- 2- Related approaches
- 3- TOS-GP
- 4- Experiments

Learning output fields/signals

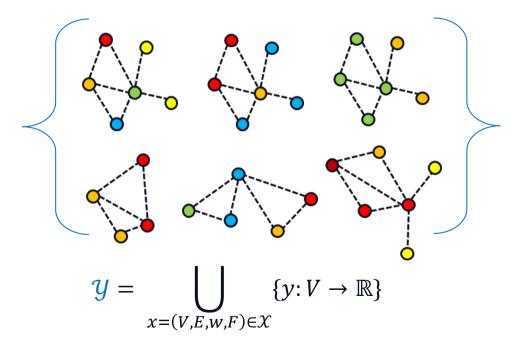
Learn $f: \mathcal{X} \to \mathcal{Y}$ from a train dataset $\mathcal{D} = \{(x^{(i)}, y^{(i)})\}_{i=1,\dots,N}$



Learning output fields/signals

Learn $f: \mathcal{X} \to \mathcal{Y}$ from a train dataset $\mathcal{D} = \{(x^{(i)}, y^{(i)})\}_{i=1,\dots,N}$

- Inputs can have different sizes, so do the outputs
- No natural ordering of the output scalar elements
- The number of output elements can be very large

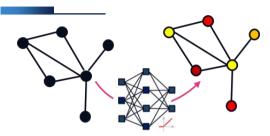


I) Scalar outputs

- 1- Gaussian process regression
- 2- Graph kernels
- 3- SWWL graph kernel

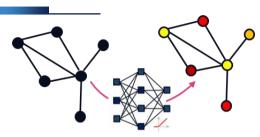
II) Signal outputs

- 1- Problem statement
- 2- Related approaches
- 3- TOS-GP
- 4- Experiments



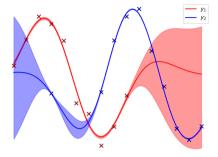
Graph Neural Networks

- ✓ Signal prediction [Pfaff, 2020]
- **✗** No uncertainties
- Training time



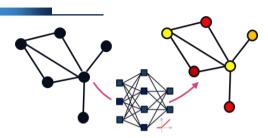
Graph Neural Networks

- ✓ Signal prediction [Pfaff, 2020]
- X No uncertainties
- Training time



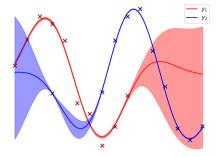
Multi/Functional Output GPs

- No ordering of the output elements
- Varying domains [Goovaerts, 1997]



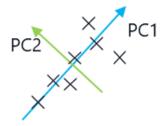
Graph Neural Networks

- ✓ Signal prediction [Pfaff, 2020]
- X No uncertainties
- ➤ Training time



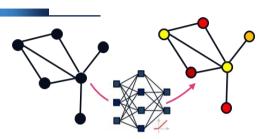
Multi/Functional Output GPs

- No ordering of the output elements
- Varying domains [Goovaerts, 1997]



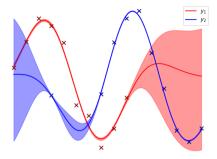
Dimension reduction

No ordering of the output elements [Kontolati, 2022]



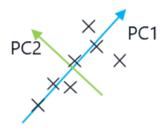
Graph Neural Networks

- ✓ Signal prediction [Pfaff, 2020]
- **✗** No uncertainties
- Training time



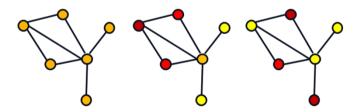
Multi/Functional Output GPs

- No ordering of the output elements
- Varying domains [Goovaerts, 1997]



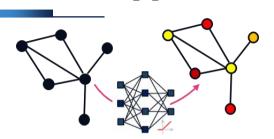
Dimension reduction

No ordering of the output elements [Kontolati, 2022]



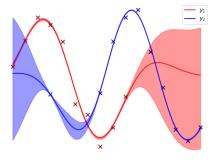
Graph signal processing [Ortega, 2018]

Incomparable eigendecompositions



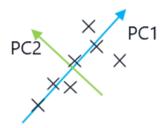
Graph Neural Networks

- ✓ Signal prediction [Pfaff, 2020]
- No uncertainties
- **✗** Training time



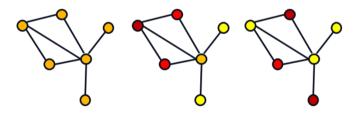
Multi/Functional Output GPs

- No ordering of the output elements
- Varying domains [Goovaerts, 1997]



Dimension reduction

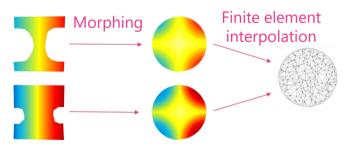
No ordering of the output elements [Kontolati, 2022]



Z eigenvalue,
 S smoothness

Graph signal processing [Ortega, 2018]

Incomparable eigendecompositions



Mesh Morphing Gaussian Processes

- ✓ Prediction + uncertainties [Casenave, 2024]
- Specific to meshes + same topology

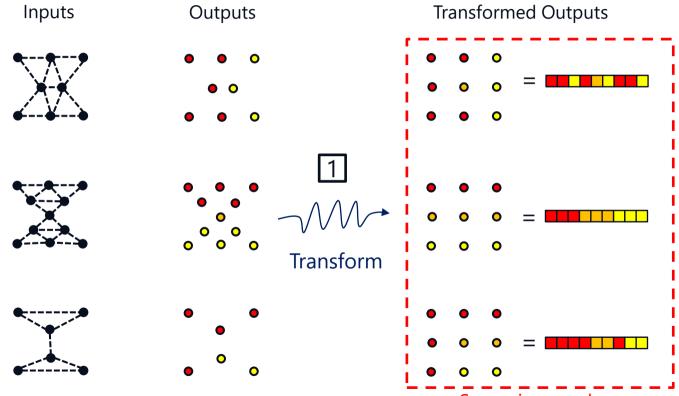
I) Scalar outputs

- 1- Gaussian process regression
- 2- Graph kernels
- 3- SWWL graph kernel

II) Signal outputs

- 1- Problem statement
- 2- Related approaches
- 3- TOS-GP
- 4- Experiments

Express signals/fields in the same space?



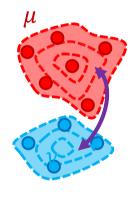
Wasserstein distance

Wasserstein distance

$$\mathcal{W}^{2}(\mu,\nu) = \inf_{\gamma \in \Pi(\mu,\nu)} \int_{\mathbb{R}^{s} \times \mathbb{R}^{s}} ||x - y||^{2} d\gamma(x,y),$$

Where:

- $-s \in [1, +\infty),$
- $\mathcal{P}_2(\mathbb{R}^s)$: probability measures on \mathbb{R}^s with finite moments of order 2,
- $-\Pi(\mu,\nu) = \{ \pi \in \mathcal{P}_2(\mathbb{R}^s \times \mathbb{R}^s) : (Proj_1)_{\#\pi} = \mu, (Proj_2)_{\#\pi} = \nu \}$



Wasserstein distance

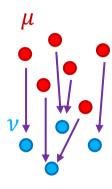
Wasserstein distance (discrete case)

$$W^{2}(\mu, \nu) = \min_{P \in U(n, n')} \langle C^{\mu, \nu}, P \rangle$$
 Transport plan Cost matrix

Where:
$$\mu = \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i} \qquad \nu = \frac{1}{n'} \sum_{i=1}^{n'} \delta_{z_i}$$

$$-U(n,n') = \left\{ P \in \mathbb{R}_+^{n \times n'} : P1_{n'} = \frac{1}{n} 1_n, P1_n = \frac{1}{n'} 1_{n'} \right\}$$

$$-C^{\mu,\nu} = [\|x_i - z_j\|^2]_{i=1...n, j=1...n'}$$



Wasserstein distance

Regularized Wasserstein distance

[Peyré & Cuturi, 2019]

$$\mathcal{W}_{\lambda}^{2}(\mu,\nu) = \min_{P \in U(n,n')} \langle C^{\mu,\nu}, P \rangle - \lambda H(P), \quad \lambda > 0$$
 Entropic regularization

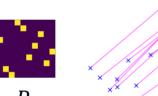
$$L_{\lambda}(\mu, \nu, P) = \langle C^{\mu, \nu}, P \rangle - \lambda H(P)$$

$$P_{\lambda} = \underset{P \in U(n,n')}{argmin} L_{\lambda}(\mu,\nu,P)$$

Smoothed transport plan

- ✓ Smoothing of the transport plans
- \checkmark Sinkhorn: $O(n^2 \log(n))$

1- Without regularization $\lambda = 0$



2- With regularization

$$\lambda > 0$$



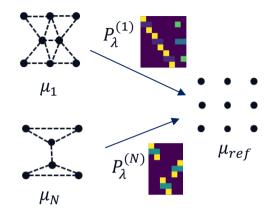
Transferring fields with transport plans

Part 1: getting transport plans (input space)

 μ_{ref} : reference measure of size n_{ref}

$$\mu_i = \frac{1}{n_i} \sum_{j=1}^{n_i} \delta_{[\phi_{WL}(G^{(i)})]_j}$$
: WL embeddings of input graph i

$$P_{\lambda}^{(i)} = \underset{P \in U(n_i, n_{ref})}{\operatorname{argmin}} L_{\lambda}(\mu_i, \mu_{ref}, P) \in \mathbb{R}^{n_i \times n_{ref}}$$



Transferring fields with transport plans

Part 1: getting transport plans (input space)

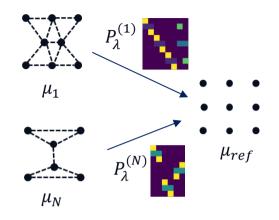
 μ_{ref} : reference measure of size n_{ref}

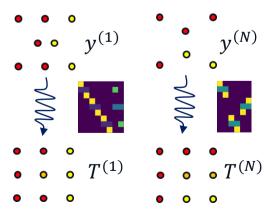
$$\mu_i = \frac{1}{n_i} \sum_{j=1}^{n_i} \delta_{[\phi_{WL}(G^{(i)})]_j}$$
: WL embeddings of input graph i

$$P_{\lambda}^{(i)} = \underset{P \in U(n_i, n_{ref})}{\operatorname{argmin}} L_{\lambda}(\mu_i, \mu_{ref}, P) \in \mathbb{R}^{n_i \times n_{ref}}$$

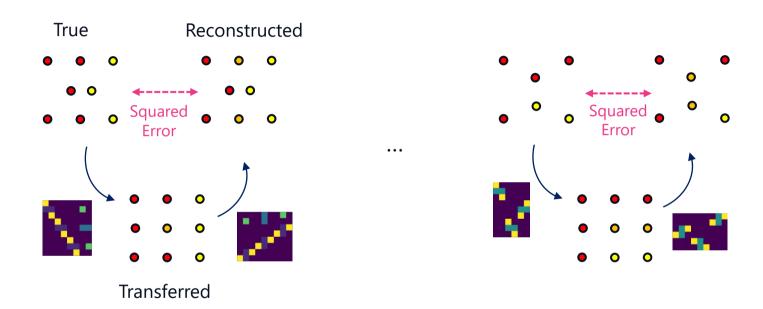
Part 2: transferring **output** signals

$$T^{(i)} = \left(n_{ref}P_{\lambda}^{(i)}\right)^{\mathsf{T}} y^{(i)} \in \mathbb{R}^{n_{ref}}$$
 Transferred field $\tilde{y}^{(i)} = \left(n_{i}P_{\lambda}^{(i)}\right)T^{(i)} \in \mathbb{R}^{n_{i}}$ Reconstructed field





How to choose the regularization parameter?

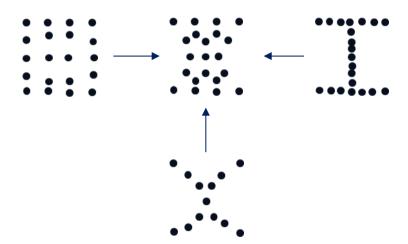


Choose $\lambda > 0$ that minimizes the error (RRMSE) between

- the **train** output fields and
- the **train** reconstructed fields

How to choose a reference measure?

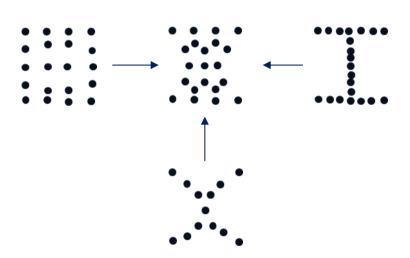
1) Optimal transport barycenter:



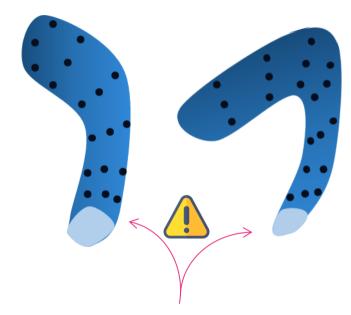
Barycenter of all train measures

How to choose a reference measure?

1) Optimal transport barycenter:



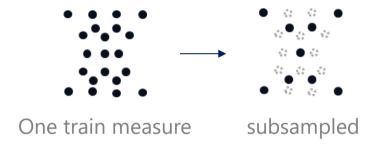
Barycenter of all train measures



Discretizations of manifolds

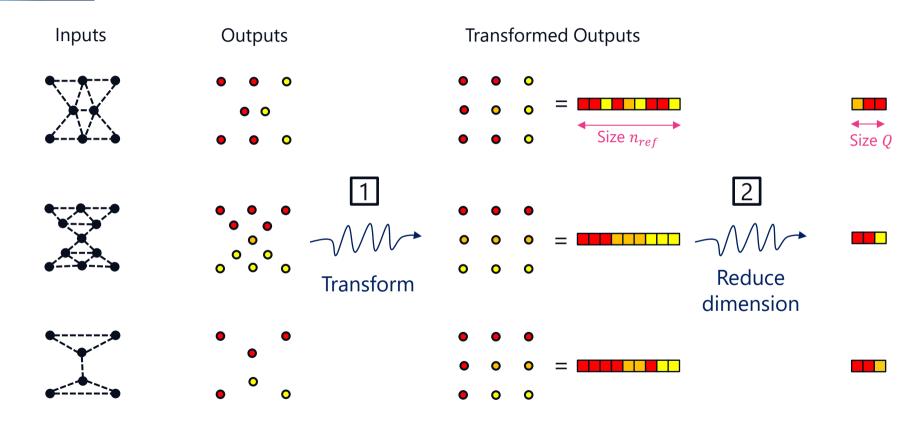
How to choose a reference measure?

2) Subsample from a train measure:



3) Uniform grid on a reference shape:

Express signals/fields in the same space?



Dimension reduction (in practice)

Principal component analysis

[Kontolati 2022]

$$T = (T^{(1)}, \cdots, T^{(N)}) \in \mathbb{R}^{N \times n_{ref}}$$

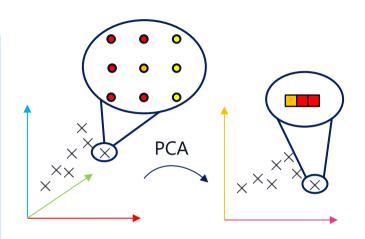
 $\overline{T} = T$ centered

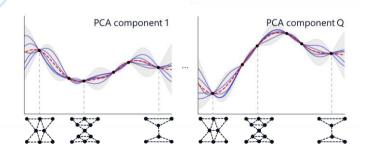
$$\begin{array}{ll} \frac{1}{N}\overline{\boldsymbol{T}}^{\top}\overline{\boldsymbol{T}} &= EDiag(\lambda_1,\cdots,\lambda_Q)\mathbf{E}^{\top} \\ \lambda_1 \leq \cdots \leq \lambda_Q : \text{eigenvalues} \end{array}$$

 $E \in \mathbb{R}^{n_{ref} \times Q}$: eigenvectors

Q first PCA coefficients: $C = TE \in \mathbb{R}^{N \times Q}$

Learn Q independent GPs using SWWL graph kernels for the inputs

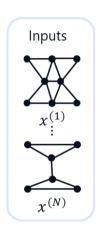


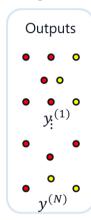


TOS-GP: Transported Output Signal Gaussian Processes [CP, Da Veiga, Garnier, Staber, 2025]

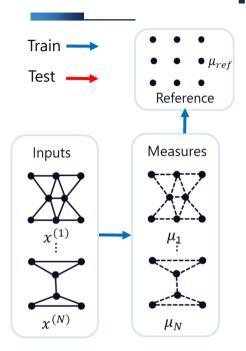
Train -

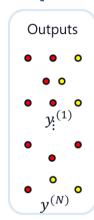
Test



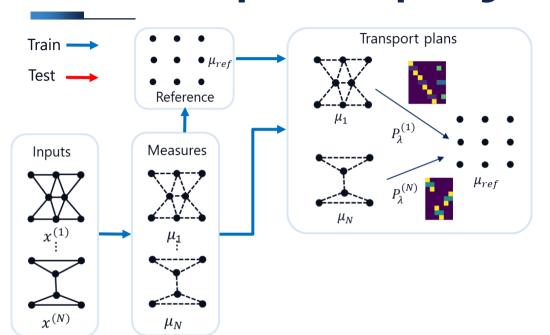


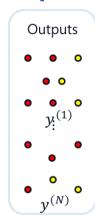
[CP, Da Veiga, Garnier, Staber, 2025]





[CP, Da Veiga, Garnier, Staber, 2025]





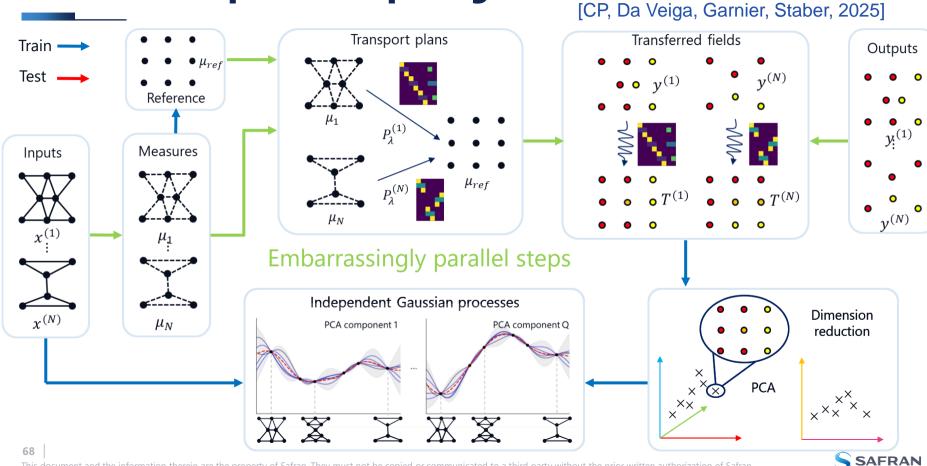
Train μ_{ref} Reference

Measures μ_{n} μ_{n}

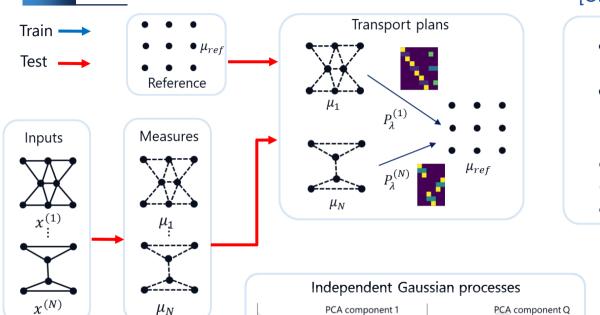
 $\chi^{(N)}$

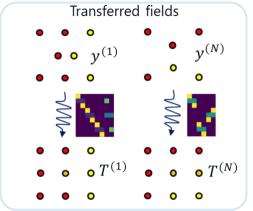
 μ_N

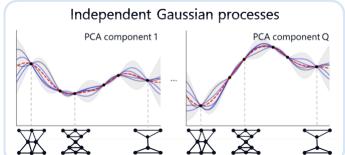
TOS-GP: Transported Output Signal Gaussian Processes [CP, Da Veiga, Garnier, Staber, 2025] Transferred fields Transport plans Train -Outputs Test • $y^{(1)}$ Reference Measures Inputs μ_{ref} μ_N Independent Gaussian processes Dimension $x^{(N)}$ μ_N PCA component 1 PCA component Q reduction **PCA** \times_{\times}

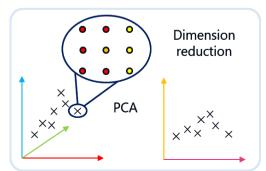


[CP, Da Veiga, Garnier, Staber, 2025]









TOS-GP: Transported Output Signal Gaussian Processes [CP, Da Veiga, Garnier, Staber, 2025] Transferred fields Transport plans Train -Outputs Test • $y^{(1)}$ Reference Measures Inputs μ_{ref} Independent Gaussian processes Dimension $x^{(N)}$ μ_N PCA component 1 PCA component Q reduction **PCA** \times_{\times}

TOS-GP: Transported Output Signal Gaussian Processes [CP, Da Veiga, Garnier, Staber, 2025] Transferred fields Transport plans Train -Outputs Test • $y^{(1)}$ Reference Measures Inputs μ_{ref} $\circ T^{(N)}$ μ_N Regression model Dimension reduction $x^{(N)}$ μ_N Kernel SWWL, WWL, Propagation, FGW, ... Auto-encoder

I) Scalar outputs

- 1- Gaussian process regression
- 2- Graph kernels
- 3- SWWL graph kernel

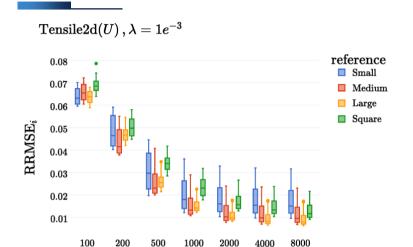
II) Signal outputs

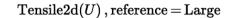
- 1- Problem statement
- 2- Related approaches
- 3- TOS-GP
- 4- Experiments

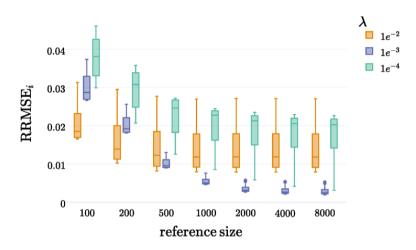
Datasets

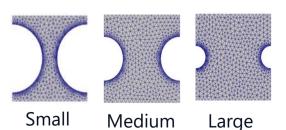
Dataset name	Train/Test	Nodes	Output fields	
Rotor37	1000 / 200	~30000	Temperature (T)	
Tensile2d	500 / 200	~9500	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Multiscale	764 / 376	~4600	H displacement (U)	

TOS-GP: regression scores





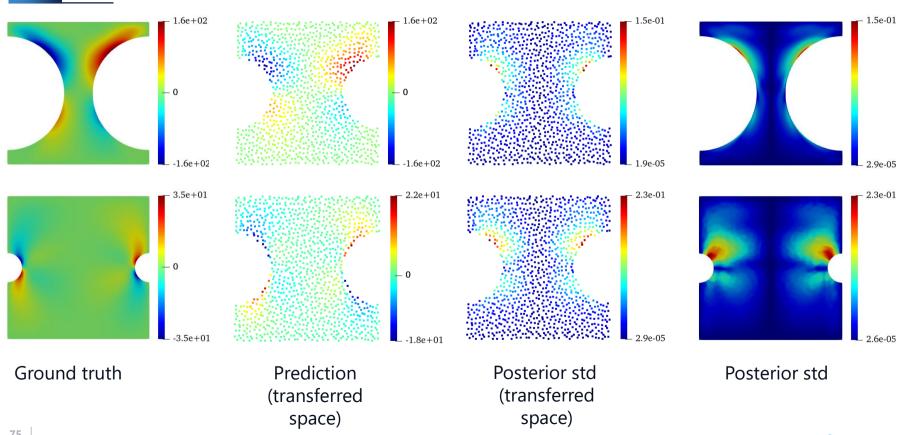




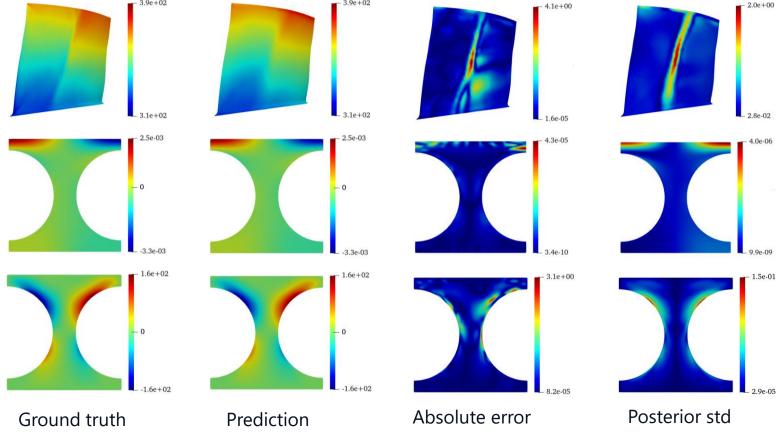
reference size

- The error decreases when the size of the reference increases
- It remains close to a constant beyond 1000 points
- The choice of the reference type has little importance for this problem
- The choice of the regularization parameter is critical

TOS-GP: uncertainty propagation (field σ_{12})



TOS-GP: predictions and uncertainties

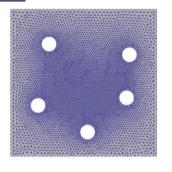


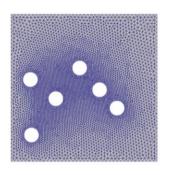
TOS-GP: regression scores

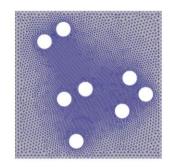
	Method/Dataset	Rotor37(T)	${\tt Tensile2d}({\tt U})$	$\texttt{Tensile2d}(\sigma_{12})$
RRMSE (10 exp)	TOS-GP GCNN MGN	3.9e-3 (1e-4)	2.2e-3 (8e-6) 4.5e-2 (1e-2) 1.5e-2 (1e-3)	5.6e-3 (3e-6) 4.5e-2 (4e-3) 7.5e-3 (4e-4)
	MMGP	,	3.4e-3 (4e-5)	2.4e-3 (2e-5)

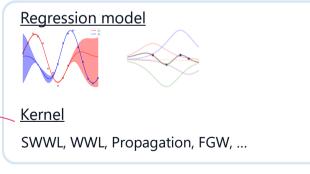
$$RRMSE^{2}\left(\left\{y^{(i)}\right\}_{i=1,\cdots,N_{*}},\left\{\hat{y}^{(i)}\right\}_{i=1,\cdots,N_{*}}\right) = \frac{1}{N_{*}}\sum_{i=1}^{N_{*}}RRMSE_{i}^{2}\left(y^{(i)},\hat{y}^{(i)}\right)$$

$$RRMSE_i^2(y^{(i)}, \hat{y}^{(i)}) = \frac{\|y^{(i)} - \hat{y}^{(i)}\|_2^2}{n_{*i} \|y^{(i)}\|_{\infty}^2}$$

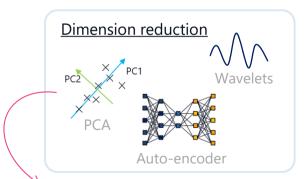






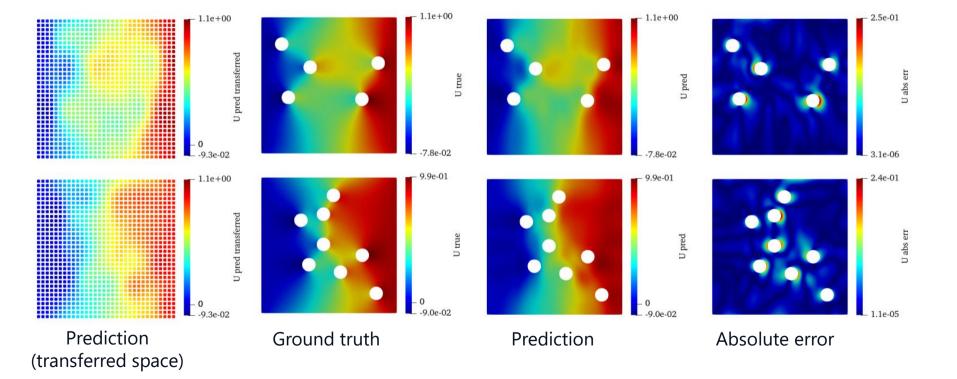


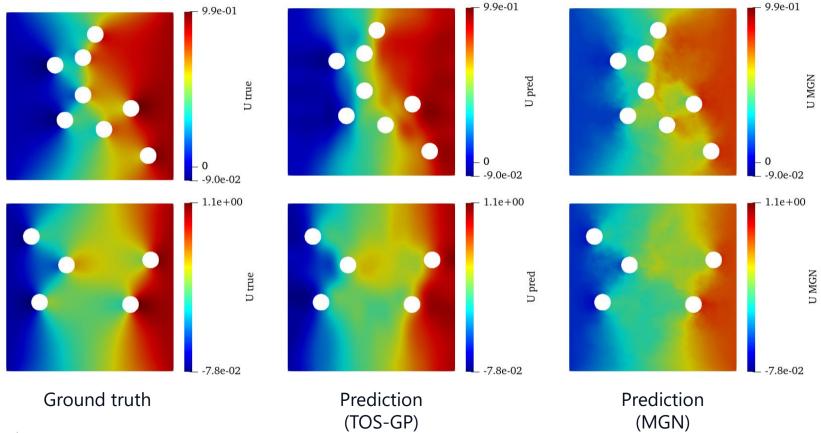
Squared-exp using the MMD distance between the centers of the pores

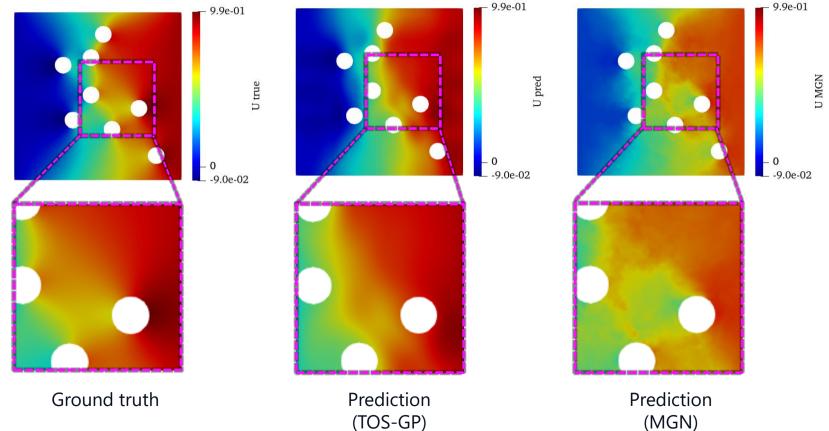


Auto-encoder with convolutional and 2D discrete Fourier layers

[Li et al. 2020]



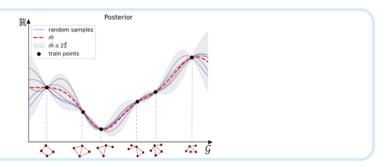




Conclusion

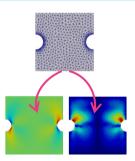
Inputs = Graphs, Outputs = **Scalars**

- SWWL graph kernel
 - ✓ Positive definite
 - ✓ Can consider very large graphs



Inputs = Graphs, Outputs = **Signals**

- Classical techniques impossible to use directly MOGP, OVGP, GSP, dimension reduction, ...
- TOS-GP: Transported Output Signal GP
 Optimal transport + Dimension reduction
 - ✓ Flexible (change kernel/dimension reduction)
 - ✓ No assumption on the data (mesh/topology)
 - ✓ Few hyperparameters: λ , ref. measure, WL iter.



Future work
 Consider more discontinuous signals
 Optimal transport variants

Acknowledgments

This work was supported by the French National Research Agency (ANR) through the SAMOURAI project under grant ANR20-CE46-0013.

References

Graph kernels, Gaussian processes

- Nikolentzos, G., Siglidis, G., & Vazirgiannis, M. (2021). Graph kernels: A survey.
- Kriege, N. M., Johansson, F. D., & Morris, C. (2020). A survey on graph kernels.
- Feragen, A., Kasenburg, N., Petersen, J., de Bruijne, M., & Borgwardt, K. (2013). Scalable kernels for graphs with continuous attributes.
- Williams, C. K., & Rasmussen, C. E. (2006). Gaussian processes for machine learning.
- Hein, M., & Bousquet, O. (2005). Hilbertian metrics and positive definite kernels on probability measures.
- Kriege, N. M., Fey, M., Fisseler, D., Mutzel, P., & Weichert, F. (2018, August). Recognizing cuneiform signs using graph based methods.

Optimal transport

- Peyré, G., & Cuturi, M. (2019). Computational optimal transport: With applications to data science.
- Togninalli, M., Ghisu, E., Llinares-López, F., Rieck, B., & Borgwardt, K. (2019). Wasserstein weisfeilerlehman graph kernels.
- Meunier, D., Pontil, M., & Ciliberto, C. (2022). Distribution Regression with Sliced Wasserstein Kernels.
- Bonneel, N., Rabin, J., Peyr'e, G., and Pfister, H. (2015). Sliced and radon Wasserstein barycenters of measures

References

Multi-output approaches

- Goovaerts, P. (1997). Geostatistics for natural resources evaluation.
- Kadri, H., Duflos, E., Preux, P., Canu, S., Rakotomamonjy, A., & Audiffren, J. (2016). Operator-valued kernels for learning from functional response data.
- Kadri, H., Ghavamzadeh, M., & Preux, P. (2013, February). A generalized kernel approach to structured output learning.
- Weston, J., Chapelle, O., Vapnik, V., Elisseeff, A., & Schölkopf, B. (2003). Kernel dependency estimation.
- Brouard, C., Szafranski, M., & d'Alché-Buc, F. (2016). Input output kernel regression: Supervised and semi-supervised structured output prediction with operator-valued kernels.
- Kontolati, K., Loukrezis, D., Giovanis, D. G., Vandanapu, L., & Shields, M. D. (2022). A survey of unsupervised learning methods for high-dimensional uncertainty quantification in black-box-type problems.
- Casenave, F., Staber, B., & Roynard, X. (2024). Mmgp: a mesh morphing gaussian process-based machine learning method for regression of physical problems under nonparametrized geometrical variability
- Shuman, D. I., Narang, S. K., Frossard, P., Ortega, A., & Vandergheynst, P. (2013). The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains.

SAFRAN

Gaussian process regression

Noisy observations:

$$\mathbf{y} = (y_i)_{i=1}^N$$
 with $y_i = f(G_i) + \epsilon_i$ where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$, $f: \mathcal{X} \to \mathbb{R}$

Gaussian prior over functions:

 $f \sim \mathcal{GP}(0, k)$ where $k: \mathcal{G} \times \mathcal{G} \to \mathbb{R}$ is a symmetric **positive definite kernel**

- $\mathcal{X} = \mathcal{G}$ is a set of graphs.
- How to choose k?

$$k \left(\begin{array}{c} \\ \\ \end{array} \right) = ?$$

Test locations:

$$G^* = (G_i^*)_{i=1}^{N^*}$$

Predictions? $f_* = (f(G_i^*))_{i=1}^{N^*}$?

 K, K_{**}, K_{*} : train, test, train/test Gram matrices

$$\begin{bmatrix} \mathbf{y} \\ \mathbf{f}_* \end{bmatrix} \sim \mathcal{N} \left(0, \begin{bmatrix} \mathbf{K} + \sigma^2 I & \mathbf{K}_*^T \\ \mathbf{K}_* & \mathbf{K}_{**} \end{bmatrix} \right)$$

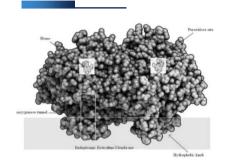
Posterior distribution:

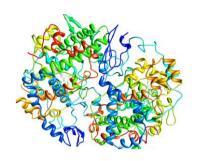
$$f_* \mid G, y, G^* \sim \mathcal{N}(\overline{m}, \overline{\Sigma})$$

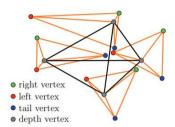
$$\bar{\boldsymbol{m}} = \boldsymbol{K}_* (\boldsymbol{K} + \sigma^2 \boldsymbol{I})^{-1} \boldsymbol{y}$$

$$\overline{\mathbf{\Sigma}} = \mathbf{K}_{**} - \mathbf{K}_{*} (\mathbf{K} + \sigma^{2} \mathbf{I})^{-1} \mathbf{K}_{*}^{T}$$

SWWL kernel: experiments

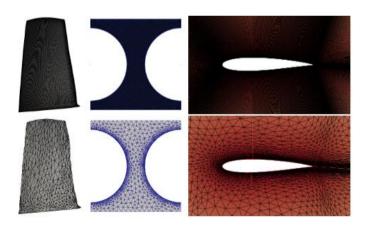


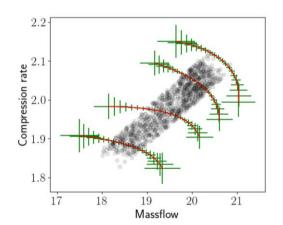


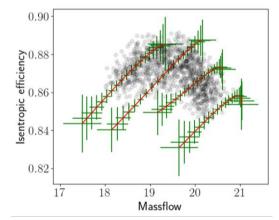


(a) Cuneiform tablet

(b) Graph representation







MMD subsampling procedure

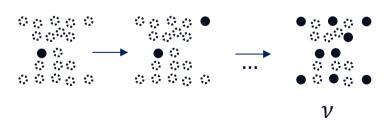
Maximum mean discrepancy:

$$MMD_k(\mu,\nu) = \mathbb{E}_{x \sim \mu,x' \sim \mu}[k(x,x')] + \mathbb{E}_{y \sim \nu,y' \sim \nu}[k(y,y')] - 2\mathbb{E}_{x \sim \mu,y \sim \nu}[k(x,y)]$$

Input: μ a given measure in the train set. Output: ν the subsampled measure.

$$\nu = \emptyset$$

At each iteration, choose the point x in the support of μ that minimizes the MMD between μ and $\nu + \delta_x$, and update ν .



POWERED BY TRUST

