
Deep Learning for
Scientists and Engineers

Deep Learning for Science and Engineering Teaching Kit

DAY 1 DEMO: PINNs and PIKANS

Instructors: George Em Karniadakis, Khemraj Shukla

2

The Deep Learning for Science and Engineering Teaching Kit is licensed by NVIDIA and Brown University under the

Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

3

Course Roadmap

▪ Lecture 1: PINNs and PIKANs: 90 Minutes

▪ Lecture 1: Hands On: 90 Mins

▪ Lecture 2: Neural Operators: 105 Minutes

▪ Lecture 2: Hands On: 75 Mins

4

Contents

❑ PINNs for Burgers Equation

❑ PINNs for Boundary Value Problems

❑ PINNs for Poisson Equation for Inverse Problem for scalar parameter

❑ PINNs for Poisson Equation for Inverse Problem for parameter as a function

❑ Soft Constraints and Weights

❑ Hard Constraints: Boundary Conditions

❑ Linearly Constrained Neural Networks

5

Quick check on Python with audience

❑ Fast iteration and deployment

❑ Rich ecosystem of DL frameworks

❑ Often has poor performance

Python is the lingua franca for AI.

6

Automatic Differentiation
Gradient is computed using Automatic Differentiation (AD), which uses pre-defined derivatives and the chain

rule to compute derivatives of more complex functions.

Automatic Differentiation (AD) depends on the dimensionality of domain and co-domain.

Efficient: Can evaluate the function at cost .

Forward Mode

Automatic Differentiations

Function Evaluations

at Dual numbers

7

Dual and Jacobian

Dual numbers:

Single variable: Chain rule:

Example

Jacobian:

8

JVP and VJP

JVP Chain Rule:

VJP Chain Rule:

VJP for Loss Function

JVP:

VJP:

9

Example: JVP and VJP

VJP
JVP

10

What is JAX: Just After eXecution

Accelerated Linear Algebra

GPUs, CPUs, TPUs

“we had all sorts of Aces, Kings, and Queens. Now we have JAX.”- Anonymous

❑ Jax is a Python library designed for high-performance ML research and Generic Scientific

Computing.

❑ JAX is a numerical computing library, like Numpy, but with some key improvements.

❑ Developed by Google and used internally both by Google and Deepmind teams.

11

What is JAX: Just After eXecution

“we had all sorts of Aces, Kings, and Queens. Now we have JAX.”- Anonymous

❑ JAX is not a Deep Learning framework or library.

❑ JAX is a high performance, numerical computing library which incorporates composable function transformations

Deep Learning is just a small subset of what JAX can do.

12

Why JAX?

12

NumPy is slower than by a factor of 6 than JAX NumPy

13

Why JAX?
13

❑ NumPy on Accelerators - NumPy is one of the essentials packages for scientific computing with
Python, but it is compatible only with CPU.

❑ JAX provides an implementation of NumPy with identical APIs that works on both GPU and TPU
extremely easily.

❑ XLA - XLA, or Accelerated Linear Algebra, is a domain specific optimizing compiler, specifically for
linear algebra. JAX is built on XLA, therefore increasing the computational-speed significantly.

❑ JIT - By using XLA, JAX transform your own python functions into just-in-time (JIT) compiled
versions. This means that you can increase computation speed by potentially orders of
magnitude by adding a simple function decorator to your computational functions.

❑ AD - JAX documentation refers to JAX as "Autograd and XLA, brought together". JAX provides
several powerful auto-differentiation tools.

❑ Deep Learning - There are many libraries built on top of JAX that seek to build out Deep Learning
capabilities, including Equinox, Flax, Haiku, and Elegy. JAX's highly efficient computations of
Hessians are also relevant for Deep Learning, given that they make higher-order optimization
techniques much more feasible.

https://github.com/google/flax
https://github.com/deepmind/dm-haiku
https://github.com/poets-ai/elegy

14

JAX- XLA
14

❑ Successes of JAX rely primarily on XLA

❑ XLA significantly increases execution speed and lowers memory usage by fusing low-level operations and kernels

❑ XLA doesn’t precompile individual operations into compute kernels, but instead compiles the entire graph into a
sequence of compute kernels generated specifically for that graph.

❑ XLA doesn’t materialize intermediate arrays in an operation sequence (instead keeping values in GPU registers
and streaming them),

❑ There for using XLA also reduces memory consumption which is very helpful for limited memory GPU
Architecture.

❑ JAX APIs are implemented in terms of operations in XLA, JAX has a unified language for computation that allows it to run
seamlessly across CPU, TPU, and GPU, with library calls getting just-in-time compiled and executed.

15

JAX Transformations
15

❑ JAX provides tools for composable function transformations.

❑A function transformation is an operator on a function whose output is another function.

❑ For example we use the gradient function transformation on a scalar-valued function

❑ JAX Transformations:

1) grad(): for evaluating the gradient function of the input function
2) vmap(): for automatic vectorization of operations
3) pmap(): for easy parallelization of computations, and
4) jit() : to transform functions into just-in-time compiled versions

JAX API: grad(f)

16

AD in JAX: PyTorch vs JAX
16

Hessian

JAX PyTorch

TensorFlow 2.0

17

17
Automatic Vectorization: vmap()

Vectorization

18

18
Just-in-Time compilation: jit()

❑Just In Time (JIT) transform compiles a JAX Python function so it can be executed efficiently in XLA. XLA is
domain specific compiler for linear algebra.

❑Just-in-time, or JIT compilation, is a method of executing code that lies between interpretation and ahead-of-
time (AoT) compilation.

❑ The important fact is that a JIT-compiler will compile code at runtime into a fast executable, at the cost of a
slower first run.

❑ JAX transforms a Python function into a simple intermediate language called jaxpr

19

19
Just-in-Time compilation: jit()

non-jit function

jit function

• The code is sending one
operation at a time to the
processor.

• This limits the ability of the XLA
compiler to optimize our
functions.

• In first run: JAX does its
tracing – it needs to have
some inputs to wrap in
tracers, after all.

• The jaxpr is compiled
using XLA into very
efficient code optimized
for your CPU, GPU or
TPU.

20

20
When to jit?

• JAX transformation and compilation are
designed to work only on Python functions
that are functionally pure.

• All the input data is passed through the
function parameters, all the results are
output through the function results.

• A pure function will always return the same
result if invoked with the same inputs.

Impure function: Mutation of array

No
conditional

21

21
Working with pytree

• In JAX, the term pytree to refers to a tree-like structure built out of container-like Python objects.

• Classes are considered container-like if they are in the pytree registry, which by default includes lists, tuples,
and dicts.

• Any object whose type is not in the pytree container registry is considered a leaf pytree;

• Any object whose type is in the pytree container registry, and which contains pytrees, is considered a pytree.

Example of pytree

22

22

Working with pytree

23

Function approximation in JAX23

1. Import modules

2. Initialization

3. Forward pass for one and batched input

24

24

Function approximation in JAX

5. Driver script and training loop

4. Loss and weights update

25

25

6. Plot results

Function approximation in JAX

26

JAX + Equinox Ecosystem: Why

Equinox is your one-stop JAX library, for everything you need that isn't already in core JAX

❑ Neural networks (or more generally any model), with easy-to-use PyTorch-like syntax

❑ Filtered APIs for transformations;

❑ useful PyTree manipulation routines;

❑ advanced features like runtime errors;

26

https://github.com/google/jax

27

Function approximation in Equinox27

1. Import modules

2. Define Neural Network Class and Forward Pass

28

Function approximation in Equinox28

3. Generate Data 4. Define Neural Network Class and Forward Pass

29

29

Function approximation in Equinox

4. Training Subroutine Training Loop

30

PINN for Burger’s Equation: Implementation

1. Import Modules and Deep Learning Framework

2a. Initialize Layers and NN Parameters

2b. Glorot Normal Initialization

31

PINN for Burger’s Equation: Implementation

3a. Forward Pass

3b. DNN Function:

4. Residual Computation

32

PINN for Burger’s Equation: Implementation

5. Backward Propagation

6. Predict

33

PINN for Burger’s Equation: Implementation

7. Data Preparation and Training

8. Optimizer and PINN Training

34

8. Actual vs Predicted Solutions at Different Times

9. Loss Function

PINN for Burger’s Equation: Results

35

35
PINN for Inverse (Scalar) Poisson Equation: Implementation Demo

36

36

PINN for Inverse (Scalar) Poisson Equation: Implementation

37

37
PINN for Inverse (Function) Poisson Equation: Implementation

38

38

PINNs: Training For Boundary Value Problems

39

39
Solution using Central Finite Difference Method

Solution computed using Central Finite-Difference Scheme

40

40

Approach 1: PINNs with Soft Constraints

41

41

Approach 1: PINNs with Soft Constraints

1. Import Modules and Initial Setup

2. Routines for Initialization, Forward
Pass and Residual computation

42

42

Approach 1: PINNs with Soft Constraints

3. Routines for Training and Predict

4. Driver

43

43

Approach 1: PINNs with Soft Constraints

44

44
Approach 2: Self-Adaptive PINNs

gradient descent

gradient ascent

▪ McClenny L, Braga-Neto U. Self-adaptive physics-informed neural networks

using a soft attention mechanism. arXiv preprint arXiv:2009.04544. 2020.

data

physics

physics

dataphysics

dataphysics

45

45
Approach 2: Implementation

1. Import Modules and Initial Setup

2. Routines for Initialization, Forward
Pass and Residual computation

Self Adaptive Weight

McClenny L, Braga-Neto U. Self-adaptive physics-informed neural networks using a soft attention mechanism. arXiv preprint arXiv:2009.04544. 2020 Sep 7.

46

46
Approach 2: Implementation

3. Min-Max Training

Maximize Loss with
Self Adaptive Weight

4. Driver

McClenny L, Braga-Neto U. Self-adaptive physics-informed neural networks using a soft attention mechanism. arXiv preprint arXiv:2009.04544. 2020 Sep 7.

47

47
Approach 2: Results

48

Self-Adaptive Weights: Alan-Cahn Equation

49

Self-Adaptive Weights: Alan-Cahn Equation (vanilla)

50
50

RBAs: Alan-Cahn Equation

51

Hard Constraints: Dirichlet BC and IC

[1] P. L. Lagaris, L. H. Tsoukalas, S. Safarkhani, and I. E. Lagaris, Systematic construction ofneural forms for solving partial differential equations inside

rectangular domains, subject to initial, boundary and interface conditions, Int. J. Artif. Intell., 29 (2020), 2050009.
[2] L. Lu, R. Pestourie, W. Yao, Z. Wang, F. Verdugo, & S. G. Johnson. Physics-informed neural networks with hard constraints for inverse design. SIAM

Journal on Scientific Computing, 43(6), B1105–B1132, 2021.

.

.

.

.

.

.

.

.

.

52
52

Hard Constraints: Periodic BC and IC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Thank You
Deep Learning for Science and Engineering Teaching Kit

	Slide 1: Deep Learning for Scientists and Engineers
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Quick check on Python with audience
	Slide 6: Automatic Differentiation
	Slide 7: Dual and Jacobian
	Slide 8: JVP and VJP
	Slide 9: Example: JVP and VJP
	Slide 10: What is JAX: Just After eXecution
	Slide 11: What is JAX: Just After eXecution
	Slide 12: Why JAX?
	Slide 13: Why JAX?
	Slide 14: JAX- XLA
	Slide 15: JAX Transformations
	Slide 16: AD in JAX: PyTorch vs JAX
	Slide 17: Automatic Vectorization: vmap()
	Slide 18: Just-in-Time compilation: jit()
	Slide 19: Just-in-Time compilation: jit()
	Slide 20: When to jit?
	Slide 21: Working with pytree
	Slide 22: Working with pytree
	Slide 23: Function approximation in JAX
	Slide 24
	Slide 25
	Slide 26: JAX + Equinox Ecosystem: Why
	Slide 27: Function approximation in Equinox
	Slide 28: Function approximation in Equinox
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38: PINNs: Training For Boundary Value Problems
	Slide 39: Solution using Central Finite Difference Method
	Slide 40: Approach 1: PINNs with Soft Constraints
	Slide 41: Approach 1: PINNs with Soft Constraints
	Slide 42: Approach 1: PINNs with Soft Constraints
	Slide 43: Approach 1: PINNs with Soft Constraints
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

