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Course Roadmap 

▪ Lecture 1: PINNs and PIKANs: 90 Minutes

▪ Lecture 1: Hands On: 90 Mins

▪ Lecture 2: Neural Operators: 105 Minutes

▪ Lecture 2: Hands On: 75 Mins
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Contents

❑ PINNs for Burgers Equation

❑ PINNs for Boundary Value Problems

❑ PINNs for Poisson Equation for Inverse Problem for scalar parameter

❑ PINNs for Poisson Equation for Inverse Problem for parameter as a function

❑ Soft Constraints and Weights

❑ Hard Constraints: Boundary Conditions

❑ Linearly Constrained Neural Networks
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Quick check on Python with audience

❑ Fast iteration and deployment  

❑ Rich ecosystem of DL frameworks 

❑ Often has poor performance 

Python is the lingua franca for AI.
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Automatic Differentiation
Gradient is computed using  Automatic Differentiation (AD), which uses pre-defined derivatives and the chain 

rule to compute derivatives of more complex functions.

Automatic Differentiation (AD) depends on the dimensionality of domain and co-domain.

Efficient: Can evaluate the function                      at cost                                  .

Forward Mode 

Automatic Differentiations

Function Evaluations

at Dual numbers
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Dual and Jacobian

Dual numbers:

Single variable:                Chain rule: 

Example

Jacobian:
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JVP and VJP

JVP Chain Rule:

VJP Chain Rule:

VJP for Loss Function

JVP:

VJP:
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Example: JVP and VJP 

VJP
JVP
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What is JAX: Just After eXecution

Accelerated Linear Algebra

GPUs, CPUs, TPUs

“we had all sorts of Aces, Kings, and Queens. Now we have JAX.”- Anonymous

❑ Jax is a Python library designed for high-performance ML research and Generic Scientific 

Computing. 

❑ JAX is a numerical computing library, like Numpy, but with some key improvements. 

❑ Developed by Google and used internally both by Google and Deepmind teams.
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What is JAX: Just After eXecution

“we had all sorts of Aces, Kings, and Queens. Now we have JAX.”- Anonymous

❑  JAX is not a Deep Learning framework or library. 

❑  JAX is a high performance, numerical computing library which incorporates composable function transformations

Deep Learning is just a small subset of what JAX can do.
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Why JAX?

12

NumPy is slower than by a factor of 6 than JAX NumPy
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Why JAX?
13

❑  NumPy on Accelerators - NumPy is one of the essentials packages for scientific computing with 
Python, but it is compatible only with CPU. 

❑  JAX provides an implementation of NumPy with identical APIs that works on both GPU and TPU 
extremely easily. 

❑  XLA - XLA, or Accelerated Linear Algebra, is a domain specific optimizing compiler, specifically for 
linear algebra. JAX is built on XLA, therefore  increasing the computational-speed significantly.

❑ JIT - By using XLA, JAX transform your own python functions into just-in-time (JIT) compiled 
versions. This means that you can increase computation speed by potentially orders of 
magnitude by adding a simple function decorator to your computational functions.

❑  AD -  JAX documentation refers to JAX as "Autograd and XLA, brought together". JAX provides 
several powerful auto-differentiation tools.

❑  Deep Learning - There are many libraries built on top of JAX that seek to build out Deep Learning 
capabilities, including Equinox, Flax, Haiku, and Elegy. JAX's highly efficient computations of 
Hessians are also relevant for Deep Learning, given that they make higher-order optimization 
techniques much more feasible.

https://github.com/google/flax
https://github.com/deepmind/dm-haiku
https://github.com/poets-ai/elegy
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JAX- XLA
14

❑  Successes of JAX rely primarily on XLA

❑ XLA significantly increases execution speed and lowers memory usage by fusing low-level operations and kernels

❑  XLA doesn’t precompile individual operations into compute kernels, but instead compiles the entire graph into a 
sequence of compute kernels generated specifically for that graph.

❑  XLA doesn’t materialize intermediate arrays in an operation sequence (instead keeping values in GPU registers 
and streaming them ), 

❑ There for using XLA also reduces memory consumption which is very helpful for limited memory GPU 
Architecture.

❑  JAX APIs  are implemented in terms of operations in XLA, JAX has a unified language for computation that allows it to run 
seamlessly across CPU, TPU, and GPU, with library calls getting just-in-time compiled and executed.
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JAX Transformations
15

❑ JAX provides tools  for composable function transformations.

❑A function transformation is an operator on a function whose output is another function.

❑  For example we use the gradient function transformation on a scalar-valued function

❑  JAX Transformations:

1) grad(): for evaluating the gradient function of the input function
2) vmap(): for automatic vectorization of operations
3) pmap(): for easy parallelization of computations, and
4) jit() : to transform functions into just-in-time compiled versions

JAX API: grad(f)
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AD in JAX: PyTorch vs JAX
16

Hessian

JAX PyTorch

TensorFlow 2.0
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Automatic Vectorization: vmap()

Vectorization
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Just-in-Time compilation: jit()

❑Just In Time (JIT) transform compiles a JAX Python function so it can be executed efficiently in XLA. XLA is 
domain specific compiler for linear algebra.

❑Just-in-time, or JIT compilation, is a method of executing code that lies between interpretation and ahead-of-
time (AoT) compilation.

❑ The important fact is that a JIT-compiler will compile code at runtime into a fast executable, at the cost of a 
slower first run.

❑  JAX transforms a Python function into a simple intermediate language called jaxpr
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Just-in-Time compilation: jit()

non-jit     function

jit     function

• The code  is sending one 
operation at a time to the 
processor. 

• This limits the ability of the XLA 
compiler to optimize our 
functions.

• In first run: JAX does its 
tracing – it needs to have 
some inputs to wrap in 
tracers, after all. 

• The jaxpr is compiled 
using XLA into very 
efficient code optimized 
for your CPU, GPU or 
TPU.
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When to jit?

• JAX transformation and compilation are 
designed to work only on Python functions 
that are functionally pure.

• All the input data is passed through the 
function parameters, all the results are 
output through the function results. 

• A pure function will always return the same 
result if invoked with the same inputs.

Impure function: Mutation of array

No 
conditional
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Working with pytree

• In JAX,  the term pytree to refers to a tree-like structure built out of container-like Python objects. 

• Classes are considered container-like if they are in the pytree registry, which by default includes lists, tuples, 
and dicts. 

• Any object whose type is not in the pytree container registry is considered a leaf pytree;

• Any object whose type is in the pytree container registry, and which contains pytrees, is considered a pytree.

Example of pytree
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Working with pytree
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Function approximation in JAX23

1. Import modules

2. Initialization

3. Forward pass for one and batched input
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Function approximation in JAX

5. Driver script and training loop

4. Loss and weights update
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6. Plot results

Function approximation in JAX
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JAX + Equinox Ecosystem: Why

Equinox is your one-stop JAX library, for everything you need that isn't already in core JAX

❑ Neural networks (or more generally any model), with easy-to-use PyTorch-like syntax

❑ Filtered APIs for transformations;

❑ useful PyTree manipulation routines;

❑ advanced features like runtime errors;

26

https://github.com/google/jax
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Function approximation in Equinox27

1. Import modules

2. Define Neural Network Class and Forward Pass
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Function approximation in Equinox28

3. Generate Data 4. Define Neural Network Class and Forward Pass
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Function approximation in Equinox

4. Training Subroutine Training Loop
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PINN for Burger’s Equation: Implementation

1. Import Modules and Deep Learning Framework

2a. Initialize Layers and NN Parameters

2b. Glorot Normal Initialization
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PINN for Burger’s Equation: Implementation

3a. Forward Pass

3b. DNN Function:

4. Residual Computation 
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PINN for Burger’s Equation: Implementation

5. Backward Propagation

6. Predict
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PINN for Burger’s Equation: Implementation

7. Data Preparation and Training

8. Optimizer and PINN Training
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8. Actual vs Predicted Solutions at Different Times

9. Loss Function

PINN for Burger’s Equation: Results
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PINN for Inverse (Scalar) Poisson Equation: Implementation Demo
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PINN for Inverse (Scalar) Poisson Equation: Implementation
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PINN for Inverse (Function) Poisson Equation: Implementation
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PINNs: Training For Boundary Value Problems
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Solution using Central Finite Difference Method

Solution computed using Central Finite-Difference Scheme
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Approach 1: PINNs with Soft Constraints
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Approach 1: PINNs with Soft Constraints

1. Import Modules and Initial Setup

2. Routines for Initialization, Forward 
Pass and Residual computation
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Approach 1: PINNs with Soft Constraints

3. Routines for Training and Predict 

4. Driver
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Approach 1: PINNs with Soft Constraints
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Approach 2: Self-Adaptive PINNs

gradient descent

gradient ascent

▪ McClenny L, Braga-Neto U. Self-adaptive physics-informed neural networks 

using a soft attention mechanism. arXiv preprint arXiv:2009.04544. 2020.

data

physics

physics

dataphysics

dataphysics
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Approach 2: Implementation

1. Import Modules and Initial Setup

2. Routines for Initialization, Forward 
Pass and Residual computation

Self Adaptive Weight

McClenny L, Braga-Neto U. Self-adaptive physics-informed neural networks using a soft attention mechanism. arXiv preprint arXiv:2009.04544. 2020 Sep 7.
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Approach 2: Implementation

3. Min-Max Training

Maximize Loss with 
Self Adaptive Weight

4. Driver

McClenny L, Braga-Neto U. Self-adaptive physics-informed neural networks using a soft attention mechanism. arXiv preprint arXiv:2009.04544. 2020 Sep 7.
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Approach 2: Results
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Self-Adaptive Weights: Alan-Cahn Equation
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Self-Adaptive Weights: Alan-Cahn Equation (vanilla)
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RBAs: Alan-Cahn Equation
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Hard Constraints: Dirichlet BC and IC

[1] P. L. Lagaris, L. H. Tsoukalas, S. Safarkhani, and I. E. Lagaris, Systematic construction ofneural forms for solving partial differential equations inside 

rectangular domains, subject to initial, boundary and interface conditions, Int. J. Artif. Intell., 29 (2020), 2050009.
[2] L. Lu, R. Pestourie, W. Yao, Z. Wang, F. Verdugo, & S. G. Johnson. Physics-informed neural networks with hard constraints for inverse design. SIAM 

Journal on Scientific Computing, 43(6), B1105–B1132, 2021.
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Hard Constraints: Periodic BC and IC
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