A statistical perspective into physics-informed learning: from PINNs to kernels

CEA-EDF-Inria Spring school, June 2025

Work team

Nathan Doumèche

Francis Bach

Gérard Biau

Claire Boyer

Shameless Advertising

s claireboyer.github.lo/tutorial-pim/

🕃 Google Lens 🍳 🖈) 😄 🌲 🗗 🕹 🕲

Bookmanks 🗀 UPWC 🗀 ENG 🔙 Les violences subi.. 🗅 Graphisme 🗅 Recherche

Tutorial: A Statistical Tour of Physics-Informed Machine Learning (PIML)

Spring School on the Mathematical Foundations of Data Science

May 20–24, 2025 Montréal

This tutorial aims to provide a statistical perspective on physics-informed learning methods, with a focus on both theoretical understanding and practical implementation.

Lecturers

Claire Boyer Professor, Université Paris-Saclay

Nathan Doumèche PhD Candidate, EDF & Sorbonne Université

https://claireboyer.github.io/tutorial-piml/

Summary

- 1. Hybrid modeling
- 2. PIML as PINN training
- 3. PIML as a kernel method
- 4. The PIKL algorithm

Summary

- 1. Hybrid modeling
- 2. PIML as PINN training
- 3. PIML as a kernel method
- 4. The PIKL algorithm

Hybrid modeling

Statistical model: $Y = f^*(X) + \varepsilon$

- Goal: estimate f^* using
 - Supervised learning: an i.i.d. training sample $(X_i, Y_i)_{1 \le i \le n}$

Physical modeling: a prior knowledge

 $\mathcal{D}(f^\star,\cdot)\simeq 0$

with a known differential operator ${\mathscr D}$

Why combining learning with physics?

Example: Blood flow in an aneurysm

Modeling the blood flow

Goal: estimate the blood flow $f = (f_x, f_y, P)$

Navier-Stokes equations:

$$\mathcal{D}_1(f,\cdot) = f_x \partial_x f_x + f_y \partial_y f_x - \partial_{x,x}^2 f_x - \partial_{y,y}^2 f_x + \partial_x P$$

$$\mathcal{D}_2(f,\cdot) = f_x \partial_x f_y + f_y \partial_y f_y - \partial_{x,x}^2 f_y - \partial_{y,y}^2 f_y + \partial_y P$$

$$\mathcal{D}_3(f,\cdot) = \partial_x f_x + \partial_y f_y$$

[Arzani et al., 2021]

Geometry of the problem

- ▶ $\Omega \subseteq [-L, L]^d$: the bounded set on which the problem is posed
- $f^*: \Omega \to \mathbb{R}$: the unknown target function
- ▶ Differential operator $\mathscr{D}(f^{\star}, \cdot) \simeq 0$ on Ω

Summary

1. Hybrid modeling

2. PIML as PINN training

- 3. PIML as a kernel method
- 4. The PIKL algorithm

Three samplings

- Training sample (X,Y)
- + Condition points X^(e)
- × Collocation points X^(r)

Physics-informed empirical risk

- ► Training sample $(X_1, Y_1), \ldots, (X_n, Y_n) \in \Omega \times \mathbb{R}^{d_2}$ (unknown distribution)
- ► Boundary/initial sample $X_1^{(e)}, ..., X_{n_e}^{(e)} \in E \subseteq \partial \Omega$ (chosen distribution)
- Collocation points $\boldsymbol{X}_1^{(r)}, \ldots, \boldsymbol{X}_{n_r}^{(r)} \in \Omega$

(uniform distribution)

Empirical risk function

$$R_{n,n_e,n_r}(f_{\theta}) = \underbrace{\frac{1}{n} \sum_{i=1}^{n} \|f_{\theta}(X_i) - Y_i\|_2^2}_{\text{data-fidelity}} + \underbrace{\frac{\lambda_{(\text{pde})}}{n_r} \sum_{\ell=1}^{n_r} \|\mathscr{D}(f_{\theta}, \mathbf{X}_{\ell}^{(r)})\|_2^2}_{\text{PDEs}}}_{\text{PDEs}} + \underbrace{\frac{\lambda_e}{n_e} \sum_{j=1}^{n_e} \|f_{\theta}(\mathbf{X}_{j}^{(e)}) - h(\mathbf{X}_{j}^{(e)})\|_2^2}_{\text{boundary conditions}}}$$

Physics-Informed Neural Networks: NN obtained after training

Neural architecture

- NN_H(D): the set of neural networks with H hidden layers of width D
- $\blacktriangleright \operatorname{NN}_{H} = \cup_{D} \operatorname{NN}_{H}(D)$
- θ : parameter of the neural network
- tanh: activation function
- $\blacktriangleright \ f_{\theta} \in C^{\infty}(\bar{\Omega}, \mathbb{R}^{d_2})$

Minimizing sequence

We denote by $(\hat{\theta}(p, n_e, n_r, D))_{p \in \mathbb{N}}$ any minimizing sequence, i.e.,

$$\lim_{p\to\infty} R_{n,n_e,n_r}(f_{\hat{\theta}(p,n_e,n_r,D)}) = \inf_{f_{\theta}\in NN_H(D)} R_{n,n_e,n_r}(f_{\theta}).$$

The training of PINNs relies on the backpropagation algorithm

Theoretical risk and consistency

Theoretical risk

$$\begin{aligned} \mathscr{R}_n(f) &= \frac{1}{n} \sum_{i=1}^n \|f(X_i) - Y_i\|_2^2 + \lambda_e \mathbb{E} \|f(\boldsymbol{X}^{(e)}) - h(\boldsymbol{X}^{(e)})\|_2^2 \\ &+ \frac{\lambda_{(\text{pde})}}{|\Omega|} \int_{\Omega} \|\mathscr{D}(f, \boldsymbol{x}^{(r)})\|_2^2 d\boldsymbol{x}^{(r)} \end{aligned}$$

A natural requirement: Risk-consistency

$$\lim_{n_e,n_r\to\infty}\lim_{p\to\infty}\mathscr{R}_n(f_{\hat{\theta}(p,n_e,n_r,D)}) \stackrel{?}{=} \inf_{f\in\mathsf{NN}_H(D)}\mathscr{R}_n(f)$$

Warning: possible overfitting

Overfitting

- Observations: $Y_i = f^*(X_i) + \varepsilon_i$
- Goal: estimate the trajectory f^* on $\Omega =]0, 1[$
- Model (dynamics with friction): $\mathscr{D}(f, \mathbf{x}) = f''(\mathbf{x}) + f'(\mathbf{x})$

Overfitting: R_{n,n_r} = 0 but ℛ_n = ∞
 Can happen also in the PDE solver case

Fighting overfitting: ridge regularization

Proposition

There exists a constant $C_{K,H} > 0$ such that

 $\|f_{\theta}\|_{\mathcal{C}^{\kappa}(\mathbb{R}^{d_{1}})} \leqslant C_{\kappa,H}(D+1)^{H\kappa+1}(1+\|\theta\|_{2})^{H\kappa}\|\theta\|_{2}.$

Ridge PINNs

$$R_{n,n_e,n_r}^{(\text{ridge})}(f_{\theta}) = R_{n,n_e,n_r}(f_{\theta}) + \frac{\lambda_{(\text{ridge})}}{\|\theta\|_2^2}$$

We denote by $(\hat{\theta}_{(\rho,n_e,n_r,D)}^{(\text{ridge})})_{\rho \in \mathbb{N}}$ a minimizing sequence of this risk.

Implemented in standard DL libraries via weight decay

Risk-consistency of ridge PINNs

Assumptions:

- ► The condition function *h* is Lipschitz
- D polynomial operator

Theorem

With a ridge hyperparameter of the form

$$\lambda_{(\mathrm{ridge})} = \min(n_e, n_r)^{-\kappa}, \qquad \kappa = \frac{1}{12 + 4H(1 + (2 + H)\deg(\mathscr{D}))},$$

one has, almost surely,

$$\lim_{n_e,n_r\to\infty}\lim_{p\to\infty}\mathscr{R}_n(f_{\hat{\theta}^{(\mathrm{ridge})}(p,n_e,n_r,D)})=\inf_{f\in\mathrm{NN}_H(D)}\mathscr{R}_n(f)$$

and

$$\lim_{D\to\infty}\lim_{n_e,n_r\to\infty}\lim_{p\to\infty}\mathscr{R}_n(f_{\hat{\theta}}^{(\mathrm{ridge})}(p,n_e,n_r,D))=\inf_{f\in\mathcal{C}^\infty(\bar{\Omega},\mathbb{R}^{d_2})}\mathscr{R}_n(f).$$

Beyond risk-consistency: strong convergence?

Ridge PINNs are risk-consistent

Question

Is this sufficient to have
$$\lim_{D,n_e,n_r,p\to\infty} f_{\hat{\theta}^{(\mathrm{ridge})}(p,n_e,n_r,D)} = f^* \text{ in } L^2(\Omega)?$$

Answer: No

Let $\Omega =]0, 1[^2, h(x, 0) = 1, h(0, t) = 1, and <math>\mathscr{D}(f, \cdot) = \partial_x f + \partial_t f$. Then, for any $(X_i, Y_i)_{1 \leq i \leq n}$, there exists $(f_p)_{p \in \mathbb{N}} \in \mathrm{NN}_H(2n)$ such that

 $\lim_{p\to\infty}\mathscr{R}_n(f_p)=0,$

but $\lim_{p\to\infty} f_p = 1$ in $L^2(\Omega)$ (independently of f^*).

X KO if imperfect modeling

Possible solution: Sobolev regularization

Sobolev regularization

Sobolev-regularized risks

Empirical risk:

$$R_{n,n_e,n_r}^{(\text{reg})}(f_{\theta}) = R_{n,n_e,n_r}(f_{\theta}) + \lambda_{(\text{ridge})} \|\theta\|_2^2 + \frac{\lambda_{(\text{sob})}}{n_r} \sum_{\ell=1}^{n_r} \sum_{|\alpha| \leqslant m+1} \|\partial^{\alpha} f_{\theta}(X_{\ell}^{(r)})\|_2^2$$

- ▶ Minimizing sequence: $(\hat{\theta}^{(sob)}(p, n_e, n_r, D))_{p \in \mathbb{N}}$
- ► Theoretical risk:

$$\mathscr{R}_{n}^{(\mathrm{sob})}(f) = \mathscr{R}_{n}(f) + \lambda_{(\mathrm{sob})} \|f\|_{H^{m+1}(\Omega)}^{2}$$

- ► The Sobolev regularization is straightforward to implement in the PINN framework with $\mathscr{D}_{\alpha}(f, \cdot) = \partial^{\alpha} f$
- Computational scalability via the backpropagation algorithm
- Coercivity of the risk

Physics inconsistency

For any $f \in H^{m+1}(\Omega, \mathbb{R}^{d_2})$, the physics inconsistency of u is defined by

$$\operatorname{PI}(f) = \lambda_e \mathbb{E} \| f(\boldsymbol{X}^{(e)}) - h(\boldsymbol{X}^{(e)}) \|_2^2 + \frac{\lambda_{(\text{pde})}}{|\Omega|} \sum_{k=1}^M \int_{\Omega} \mathscr{D}_k(f, \boldsymbol{x})^2 d\boldsymbol{x}.$$

Theorem (Linear PDE systems)

Assume that $f^* \in H^{m+1}(\Omega, \mathbb{R}^{d_2})$ for some $m \ge \max(\lfloor d_1/2 \rfloor, K)$. Let $\lambda_{e/(pde)} = \log(n)/\sqrt{n}$ and $\lambda_{(sob)} = 1/\sqrt{n}$. Then

$$\lim_{D\to\infty}\lim_{n_e,n_r\to\infty}\lim_{p\to\infty}\mathbb{E}\int_{\Omega}\|f^{(n)}_{\hat{\theta}^{(\mathrm{sob})}(p,n_e,n_r,D)}-f^{\star}\|_{2}^{2}d\mu_{\mathbf{X}}\lesssim\frac{\log^{2}(n)}{n^{1/2}}$$

and
$$\lim_{D\to\infty}\lim_{n_e,n_r\to\infty}\lim_{p\to\infty}\mathbb{E}(\mathrm{PI}(f^{(n)}_{\hat{\theta}^{(\mathrm{sob})}(p,n_e,n_r,D)}))\leqslant\mathrm{PI}(f^{\star})+\underset{n\to\infty}{\mathrm{o}}(1).$$

Conclusion: statistical accuracy + physical consistency

Overall: statistical convergence of PINNs

[Doumèche, Biau, Boyer, 2024]

Training of a NN with large width and a few hidden layers

$$\begin{split} \widehat{NN}_{\theta} \in \operatorname{argmin}_{NN} \frac{1}{n} \sum_{i=1}^{n} \|f_{\theta}(X_{i}) - Y_{i}\|_{2}^{2} + \frac{\lambda_{e}}{n_{r}} \sum_{\ell=1}^{n_{r}} \|\mathscr{D}(f_{\theta}, \boldsymbol{X}_{\ell}^{(r)})\|_{2}^{2} \\ + \frac{\lambda_{(\text{pde})}}{n_{r}} \sum_{\ell=1}^{n_{r}} \Big(\sum_{|\alpha| \leqslant s} \|\partial^{\alpha} f_{\theta}(X_{i}^{(r)})\|_{2}^{2} \Big) + \lambda^{\text{ridge}} \|\theta\|_{2}^{2} \end{split}$$

- Ridge regularization to prevent overfitting
- Sobolev and ridge regularizations for strong convergence
- Could we avoid the discretization issue and the delicate training of PINNs?

Summary

- 1. Hybrid modeling
- 2. PIML as PINN training
- 3. PIML as a kernel method
- 4. The PIKL algorithm

Towards a kernel approach

- Assumption: $f^* \in H^s(\Omega)$
- Extension: $H^{s}(\Omega) \hookrightarrow H^{s}_{per}([-2L, 2L]^{d})$
- ► $H^s_{per}([-2L, 2L]^d)$ = subspace of $H^s([-2L, 2L]^d)$ of functions whose 4*L*-periodic extension is still *s*-times weakly differentiable
- Important: $f^* \in H^s(\Omega) \iff f^* \in H^s([-2L, 2L]^d)$

Empirical risk

$$R_n(f) = \underbrace{\frac{1}{n} \sum_{i=1}^n |f(X_i) - Y_i|^2}_{\text{data-fidelity term}} + \underbrace{\lambda_{(\text{sob})} \|f\|_{H^s_{\text{per}}([-2L,2L]^d)}^2}_{\text{target regularity}} + \underbrace{\lambda_{(\text{pde})} \|\mathscr{D}(f)\|_{L^2(\Omega)}^2}_{\text{PDE}}$$

Objective

Framing PIML as a kernel method

$$\hat{f}_n = \operatorname*{argmin}_{f \in H^s_{ ext{per}}([-2L, 2L]^d)} \frac{1}{n} \sum_{i=1}^n |f(X_i) - Y_i|^2 + \|f\|^2_{ ext{RKHS}},$$

with
$$\|f\|_{\mathrm{RKHS}}^2 = \lambda_{(\mathrm{sob})} \|f\|_{H^s_{\mathrm{per}}([-2L,2L]^d)}^2 + \lambda_{(\mathrm{pde})} \|\mathscr{D}(f)\|_{L^2(\Omega)}^2$$

- How does the PDE penalty impact learning?
- How to leverage the kernel toolbox?
- How to define a tractable estimator?

Assumption

 \mathcal{D} is a linear operator of the derivatives of f.

Survival kit: Kernel ridge regression

- ► Kernel: a symmetric positive definite function $K : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$, i.e., $\sum_{i,i'=1}^{n} \alpha_i \alpha_{i'} K(x_i, x_{i'}) \ge 0$
- ▶ There exists a Hilbert space RKHS of functions $f : X \to \mathbb{R}$ such that

(*i*) $\forall x \in \mathcal{X}, K(\cdot, x) \in \text{RKHS}$ (*ii*) $\forall f \in \text{RKHS}, \langle f, K(\cdot, x) \rangle_{\text{RKHS}} = f(x)$

Reproducing kernel Hilbert space with reproducing kernel K

Example: polynomial kernel

$$\mathcal{K}(\mathbf{x},\mathbf{x}') = \langle \varphi(\mathbf{x}), \varphi(\mathbf{x}') \rangle_{\mathcal{T}} = \left\langle \begin{pmatrix} \mathbf{x} \\ \mathbf{x}^2 \end{pmatrix}, \begin{pmatrix} \mathbf{x}' \\ (\mathbf{x}')^2 \end{pmatrix} \right\rangle_{\mathcal{T}}$$

Survival kit: The kernel trick

Regularized empirical risk minimization

$$\hat{f}_n = \operatorname*{argmin}_{f \in \mathrm{RKHS}} \frac{1}{n} \sum_{i=1}^n (Y_i - f(X_i))^2 + \lambda \|f\|_{\mathrm{RKHS}}^2$$

Representer theorem

$$\hat{f}_n(x) = \sum_{i=1}^n \hat{\alpha}_i K(x, X_i)$$

▶ The solution lives in a finite-dimensional subspace!

Survival kit: Kernel methods

We solve a finite-dimensional problem

$$\begin{split} \hat{\alpha} &= \operatorname*{argmin}_{\alpha \in \mathbb{R}^{n}} \frac{1}{n} \sum_{i=1}^{n} \left(Y_{i} - \sum_{j=1}^{n} \alpha_{j} \mathcal{K}(X_{i}, X_{j}) \right)^{2} + \lambda \left\| \sum_{j=1}^{n} \alpha_{j} \mathcal{K}(\cdot, X_{j}) \right\|_{\mathrm{RKHS}}^{2} \\ &= \operatorname*{argmin}_{\alpha \in \mathbb{R}^{n}} \frac{1}{n} \left\| \mathbb{Y} - \mathbb{K} \alpha \right\|_{2}^{2} + \lambda \alpha^{\top} \mathbb{K} \alpha \\ &= \left(\mathbb{K} + n \lambda I_{n} \right)^{-1} \mathbb{Y} \end{split}$$

► Final predictor

$$\hat{f}_n(x) = \sum_{i=1}^n \hat{\alpha}_i K(x, X_i)$$

 \bigcirc No need to explicitly use/know φ to train a kernel ridge regressor!

Survival kit: Effective dimension & convergence

Integral/covariance operator L_K : L²(X, P_X) → L²(X, P_X), defined by

$$\forall f \in L^2(\mathcal{X}, \mathbb{P}_X), \forall x \in \mathcal{X}, \quad L_K f(x) = \int_{\mathcal{X}} K(x, y) f(y) d\mathbb{P}_X(y)$$

- Effective dimension: $tr(L_{\mathcal{K}}(\lambda Id + L_{\mathcal{K}})^{-1})$
- Convergence rate of the kernel method

$$\mathbb{E}\int_{\mathcal{X}}|\hat{f}_n - f^{\star}|^2 d\mathbb{P}_X = \mathcal{O}\Big(\frac{\text{Effective dimension}}{n}\Big)$$

Underlying RKHS for linear PDEs

Lemma

There exists a positive operator \mathcal{O}_n on $L^2([-2L, 2L]^d)$ such that, for any $f \in H^s_{per}([-2L, 2L]^d)$,

$$\|\mathscr{O}_n^{-1/2}(f)\|_{L^2([-2L,2L]^d)}^2 = \lambda_{(\mathrm{sob})} \|f\|_{H^s_{\mathrm{per}}([-2L,2L]^d)}^2 + \lambda_{(\mathrm{pde})} \|\mathscr{D}(f)\|_{L^2(\Omega)}^2.$$

This suggests the inner product

$$\langle f,g \rangle_{\mathrm{RKHS}} = \langle \mathcal{O}_n^{-1/2}(f), \mathcal{O}_n^{-1/2}(g) \rangle_{L^2([-2L,2L]^d)}$$

Underlying RKHS for linear PDEs II

For any
$$f \in L^2([-2L, 2L]^d)$$
 and $x \in [-2L, 2L]^d$,
 $\mathscr{O}_n(f)(x) = \sum_{m \in \mathbb{N}} a_m \langle f, v_m \rangle_{L^2([-2L, 2L]^d)} v_m(x)$

Orthonormal basis of eigenfunctions v_m ∈ H^s_{per}([-2L, 2L]^d)
 Eigenvalues a_m > 0

Theorem

The space $H_{per}^{s}([-2L, 2L]^{d})$, equipped with the inner product

$$\langle f,g\rangle_{\mathrm{RKHS}} = \langle \mathcal{O}_n^{-1/2}f, \mathcal{O}_n^{-1/2}g\rangle_{L^2([-2L,2L]^d)},$$

is a reproducing kernel Hilbert space. For $f \in H^s_{per}([-2L, 2L]^d)$,

$$\|f\|_{\mathrm{RKHS}}^2 = \lambda_{(\mathrm{sob})} \|f\|_{H^s_{\mathrm{per}}([-2L,2L]^d)}^2 + \lambda_{(\mathrm{pde})} \|\mathcal{D}(f)\|_{L^2(\Omega)}^2,$$

and the associated kernel is $K(x, y) = \sum_{m \in \mathbb{N}} a_m v_m(x) v_m(y)$.

PIML as a kernel method

$$\begin{split} \hat{f}_n &= \operatorname*{argmin}_{f \in H^s_{\mathrm{per}}([-2L,2L]^d)} \ \frac{1}{n} \sum_{i=1}^n |f(X_i) - Y_i|^2 + \lambda_{(\mathrm{sob})} \|f\|_{H^s_{\mathrm{per}}([-2L,2L]^d)}^2 + \lambda_{(\mathrm{pde})} \|\mathcal{D}(f)\|_{L^2(\Omega)}^2 \\ &= \operatorname*{argmin}_{f \in H^s_{\mathrm{per}}([-2L,2L]^d)} \ \frac{1}{n} \sum_{i=1}^n |f(X_i) - Y_i|^2 + \|f\|_{\mathrm{RKHS}}^2 \end{split}$$

 $\checkmark \hat{f}_n$ is a kernel method

× Computing the kernel is not straightforward

Proposition (Characterization of the kernel)

The kernel K is the unique solution to the following weak formulation, valid for all test functions $\varphi \in H^s_{per}([-2L, 2L]^d)$: for all $x \in \Omega$,

$$\lambda_{(\mathrm{sob})} \sum_{|\alpha| \leqslant s} \int_{[-2L, 2L]^d} \partial^{\alpha} K(x, \cdot) \ \partial^{\alpha} \varphi + \lambda_{(\mathrm{pde})} \int_{\Omega} \mathscr{D}(K(x, \cdot)) \ \mathscr{D}(\varphi) = \varphi(x).$$

Convergence rate of the PIML kernel method

▶ Integral operator $L_{\mathcal{K}} : L^2(\Omega, \mathbb{P}_X) \to L^2(\Omega, \mathbb{P}_X)$, defined by

$$\forall f \in L^2(\Omega, \mathbb{P}_X), \forall x \in \Omega, \quad L_{\mathcal{K}}f(x) = \int_{\Omega} \mathcal{K}(x, y)f(y)d\mathbb{P}_X(y)$$

• Effective dimension $\mathscr{N}(\lambda_{(\text{sob})}, \lambda_{(\text{pde})}) = \text{tr}(\mathcal{L}_{\mathcal{K}}(\text{Id} + \mathcal{L}_{\mathcal{K}})^{-1})$

Theorem (Convergence rate)

Assume that $f^* \in H^s(\Omega)$, s > d/2, $\frac{d\mathbb{P}_X}{dx} \leq \kappa$, and the noise ε is (M, σ) -sub-Gamma. Then, for all n large enough,

$$\begin{split} \mathbb{E} & \int_{\Omega} |\hat{f}_n - f^{\star}|^2 d\mathbb{P}_X \\ & \lesssim \log^2(n) \Big(\lambda_{(\text{sob})} \|f^{\star}\|_{H^s(\Omega)}^2 + \lambda_{(\text{pde})} \|\mathscr{D}(f^{\star})\|_{L^2(\Omega)}^2 + \\ & \frac{M^2}{n^2 \lambda_{(\text{sob})}} + \frac{\sigma^2 \mathscr{N}(\lambda_{(\text{sob})}, \lambda_{(\text{pde})})}{n} \Big). \end{split}$$

- × Not easy to characterize the eigenvalues of L_K for the PIML estimator
- ▶ A simple bound on $\mathscr{N}(\lambda_{(sob)}, \lambda_{(pde)})$ shows that

$$\mathbb{E}\int_{\Omega}|\hat{f}_n-f^{\star}|^2d\mathbb{P}_X=\mathcal{O}_n(n^{-2s/(2s+d)}\log^3(n))$$

Can we do better?

A toy example

►
$$d = 1, \ \Omega = [-L, L], \ \Omega^{\text{aug}} = [-2L, 2L]$$

► $f^* \in H^1(\Omega)$
► $\mathscr{D} = \frac{d}{dx}$ (f^* is approximately constant)
 $\hat{f}_n = \underset{f \in H^1_{\text{per}}(\Omega^{\text{aug}})}{\operatorname{min}} \frac{1}{n} \sum_{i=1}^n |f(X_i) - Y_i|^2 + \lambda_{(\text{sob})} ||f||^2_{H^1_{\text{per}}(\Omega^{\text{aug}})} + \lambda_{(\text{pde})} ||\mathscr{D}(f)||^2_{L^2(\Omega)}$

Speed-up of the physical penalty

Theorem (Kernel speed-up)

Let $\lambda_{(sob)} = n^{-1} \log(n)$ and

$$\lambda_{(\text{pde})} = \begin{cases} n^{-2/3} / \|\mathscr{D}(f^{\star})\|_{L^{2}(\Omega)} & \text{if } \|\mathscr{D}(f^{\star})\|_{L^{2}(\Omega)} \neq 0\\ 1 / \log(n) & \text{if } \|\mathscr{D}(f^{\star})\|_{L^{2}(\Omega)} = 0. \end{cases}$$

Then

$$\mathbb{E} \int_{[-L,L]} |\hat{f}_n - f^*|^2 d\mathbb{P}_X = \|\mathscr{D}(f^*)\|_{L^2(\Omega)} \mathcal{O}_n(n^{-2/3}\log^3(n)) \\ + (\|f^*\|_{H^s(\Omega)}^2 + \underbrace{\sigma^2 + M^2}_{noise \ param}) \mathcal{O}_n(n^{-1}\log^3(n)).$$

Speed-up of the physical penalty

Theorem (Kernel speed-up)

Let $\lambda_{(sob)} = n^{-1} \log(n)$ and

$$\lambda_{(\text{pde})} = \begin{cases} n^{-2/3} / \|\mathscr{D}(f^{\star})\|_{L^{2}(\Omega)} & \text{ if } \|\mathscr{D}(f^{\star})\|_{L^{2}(\Omega)} \neq 0\\ 1 / \log(n) & \text{ if } \|\mathscr{D}(f^{\star})\|_{L^{2}(\Omega)} = 0. \end{cases}$$

Then

$$\mathbb{E} \int_{[-L,L]} |\hat{f}_n - f^*|^2 d\mathbb{P}_X = \|\mathscr{D}(f^*)\|_{L^2(\Omega)} \mathcal{O}_n(n^{-2/3}\log^3(n)) \\ + (\|f^*\|_{H^s(\Omega)}^2 + \underbrace{\sigma^2 + M^2}_{noise \ param}) \mathcal{O}_n(n^{-1}\log^3(n)).$$

✓ When $\|\mathscr{D}(f^*)\|_{L^2(\Omega)} = 0 \rightarrow \text{parametric rate of } n^{-1}$

✓ When $\|\mathscr{D}(f^*)\|_{L^2(\Omega)} > 0$ → Sobolev minimax rate in $H^1(\Omega)$ of $n^{-2/3}$

Summary

- 1. Hybrid modeling
- 2. PIML as PINN training
- 3. PIML as a kernel method
- 4. The PIKL algorithm

In practice

- ► Kernel estimator: $\hat{f}_n(x) = (K(x, X_1), \dots, K(x, X_n))(\mathbb{K} + nI_n)^{-1}\mathbb{Y}$
- Problem: what to do when K is not explicit?
- Solution 1: finite element methods to solve a weak PDE

$$\lambda_{(\mathrm{sob})} \int_{\Omega} \left[\mathsf{K}(\mathsf{x},\cdot) \ \varphi + \sum_{|\alpha|=s} \partial^{\alpha} \mathsf{K}(\mathsf{x},\cdot) \ \partial^{\alpha} \varphi \right] + \lambda_{(\mathrm{pde})} \int_{\Omega} \mathscr{D}(\mathsf{K}(\mathsf{x},\cdot)) \ \mathscr{D}(\varphi) = \varphi(\mathsf{x})$$

In practice

• Kernel estimator $\hat{f}_n(x) = (K(x, X_1), \dots, K(x, X_n))(\mathbb{K} + nI_n)^{-1}\mathbb{Y}$

- Problem: what to do when K is not explicit?
- Solution 2: exploit Fourier series
 - 1. Periodize

$$\bar{R}_{n}(f) = \frac{1}{n} \sum_{i=1}^{n} |f(X_{i}) - Y_{i}|^{2} + \lambda_{(\text{sob})} \|f\|_{H^{s}_{\text{per}}([-2L, 2L]^{d})}^{2} + \lambda_{(\text{pde})} \|\mathscr{D}(f)\|_{L^{2}(\Omega)}^{2}$$

2. Restrict the minimization to

$$H_m = \operatorname{Span}((\varphi_k)_{\|k\|_{\infty} \leqslant m}), \quad \text{with} \quad \varphi_k(x) = (4L)^{-d/2} e^{\frac{i\pi}{2L} \langle k, x \rangle}$$

3. PIKL estimator:

$$\hat{f}^{\mathrm{PIKL}} = \operatorname*{argmin}_{f \in H_m} \ \bar{R}_n(f)$$

Properties of the PIKL estimator

• Assumption: linear operator $\mathscr{D}(f) = \sum_{|\alpha| \leq s} a_{\alpha} \partial^{\alpha} f$

Both the Sobolev norm $||f||_{H^s_{per}([-2L,2L]^d)}$ and the PDE penalty $||\mathscr{D}(f)||_{L^2(\Omega)}$ are bilinear functions of the Fourier coefficients z of f

$$\begin{split} \|f\|_{\mathrm{RKHS}}^2 &= \langle z, M_m z \rangle_{\mathbb{C}^{(2m+1)^d}} \text{ on } H_m \\ &+ M_m \in \mathbb{C}^{(2m+1)^d \times (2m+1)^d} \\ & (M_m)_{j,k} = \lambda_{(\mathrm{sob})} \underbrace{\left(1 + \left(\frac{\|k\|_2^2}{(2L)^d}\right)^s\right) \delta_{j,k}}_{\text{Sobolev norm}} + \lambda_{(\mathrm{pde})} \underbrace{\frac{P(j)\bar{P}(k)}{(4L)^d} \int_{\Omega} e^{\frac{i\pi}{2L} \langle k-j, x \rangle} dx}_{\text{PDE norm}}, \\ & \text{where } P(k) = \sum_{|\alpha| \leqslant s} a_\alpha (\frac{-i\pi}{2L})^{|\alpha|} \prod_{\ell=1}^d (k_\ell)^{\alpha_\ell} \end{split}$$

Computation of the integrals possible by numerical integration but also by closed-form formulas:

✓ When
$$\Omega = [-L, L]^d$$
, integral $\propto \prod_{j=1}^d \frac{\sin(\pi k_j/2)}{\pi k_j}$
✓ When $\Omega = B_2^2$, integral $\propto \frac{\text{Bessel function}_1(\pi ||k||_2/2)}{4||k||_2}$

Computing the PIKL estimator

For $f \in H_m$:

PIKL estimator

$$\begin{split} \hat{f}^{\text{PIKL}}(x) &= (K_m(x,X_1),\ldots,K_m(x,X_n))(\mathbb{K}_m+nI_n)^{-1}\mathbb{Y} \\ &= \Phi_m(x)^*(\Phi^*\Phi+nM_m)^{-1}\Phi^*\mathbb{Y} \end{split}$$

with
$$\Phi = \begin{pmatrix} \Phi_m(X_1)^{\star} \\ \vdots \\ \Phi_m(X_n)^{\star} \end{pmatrix} \in \mathbb{C}^{n \times (2m+1)^d}$$

Computing the PIKL estimator

PIKL estimator

$$\widehat{\mathcal{C}}^{\text{PIKL}}(x) = (\mathcal{K}_m(x, X_1), \dots, \mathcal{K}_m(x, X_n)) \underbrace{(\mathbb{K}_m + nI_n)^{-1}}_{n \times n} \mathbb{Y}$$
$$= \Phi_m(x)^* \underbrace{(\Phi^* \Phi + nM_m)^{-1}}_{(2m+1)^d} \Phi^* \mathbb{Y}$$

- Complexity/storage: $n \times n$ vs. $(2m+1)^d \times (2m+1)^d$
- ▶ Possible computation of $\Phi^*\Phi$ and $\Phi^*\Psi$ online and in parallel
- Training longer than evaluation
- Interpretability of Fourier modes

XP: Perfect modeling with closed-form PDE solutions" / 49

Harmonic oscillator differential prior

•
$$d = 1$$
, $\Omega = [-\pi, \pi]$
• $\mathscr{D}(f) = \frac{d^2 f}{dx^2} + \frac{df}{dx} + f$

▶ PDE solutions $f = a_1 f_1 + a_2 f_2$, where $(a_1, a_2) \in \mathbb{R}^2$, $f_1(x) = \exp(-x/2)\cos(\sqrt{3}x/2)$, and $f_2(x) = \exp(-x/2)\sin(\sqrt{3}x/2)$

• Comparison with OLS via (\hat{a}_1, \hat{a}_2)

Fig.: L^2 -error (mean \pm std over 5 runs) w.r.t. *n* in $\log_{10} - \log_{10}$ scale.

 Expected parametric rate of n⁻¹

The PIKL estimator (m = 300) performs as well as the OLS estimator specifically designed to explore the space of PDE solutions

XP: Imperfect modeling

Heat equation

•
$$d = 2, \ \Omega = [-\pi, \pi]^2$$

$$\blacktriangleright \mathscr{D}(f) = \partial_1 f - \partial_{2,2}^2 f$$

•
$$f^*(t,x) = \exp(-t)\cos(x) + 0.5\sin(2x)$$

► Imperfect modeling: $\|\mathscr{D}(f^{\star})\|_{L^{2}(\Omega)}^{2} = \pi > 0$ and $\frac{\|\mathscr{D}(f^{\star})\|_{L^{2}(\Omega)}^{2}}{\|f^{\star}\|_{L^{2}(\Omega)}^{2}} \simeq 4 \times 10^{-3}$

- Sobolev minimax rate of $n^{-2/3}$
- The PIKL estimator successfully combines the strengths of hybrid modeling
 - using the PDE when data is scarce
 - relying more on data when it becomes abundant

PDE solving: PINNs vs. PIKL

- Using PIKL as PDE solvers means
 - no noise (i.e., $\varepsilon = 0$)
 - no modeling error (i.e., $\mathscr{D}(f^*) = 0$)
 - data = uniform samples of $\partial \Omega$ (boundary & init. conditions) n = 100
- Convection equation: on $\Omega = [0,1] \times [0,2\pi]$

$$\mathscr{D}(f) = \partial_t f + \beta \partial_x f \quad \text{with} \quad \left\{ \begin{array}{ll} \forall x \in [0, 2\pi], \quad f(0, x) = \sin(x), \\ \forall t \in [0, 1], \quad f(t, 0) = f(t, 2\pi) = 0 \end{array} \right.$$

Solution: $f^*(t,x) = \sin(x - \beta t) \notin H_m$

[◊] Krishnapriyan et al. (2021)

	Vanilla PINNs [◊]	Curriculum-trained PINNs $^{\diamond}$	PIKL estimator
$\beta = 20$ $\beta = 30$ $\beta = 40$	$7.50 \times 10^{-1} \\ 8.97 \times 10^{-1} \\ 9.61 \times 10^{-1}$	$9.84 \times 10^{-3} \\ 2.02 \times 10^{-2} \\ 5.33 \times 10^{-2}$	$(1.56\pm3.46) \times 10^{-8}$ $(0.91\pm2.20) \times 10^{-7}$ $(7.31\pm6.44) \times 10^{-9}$

 ${\scriptstyle \blacksquare}$ PIKL (m= 20) improves the solution accuracy without being sensitive to β

PDE solving: PINNs vs. PIKL

► 1d-wave equation: on
$$\Omega = [0,1]^2$$

 $\mathscr{D}(f) = \partial_{t,t}^2 f - 4\partial_{x,x}^2 f$ with
$$\begin{cases} \forall x \in [0,1], & f(0,x) = \sin(\pi x) + \sin(4\pi x)/2, \\ \forall x \in [0,1], & \partial_t f(0,x) = 0, \\ \forall t \in [0,1], & f(t,0) = f(t,1) = 0. \end{cases}$$

Solution: $f^*(t,x) = \sin(\pi x)\cos(2\pi t) + \sin(4\pi x)\cos(8\pi t)/2$

• Significant variation $\|\partial_t f^\star\|_2^2 / \|f^\star\|_2^2 = 16\pi^2$

 $^{\diamond}$ Wang et al. (2022)

	Vanilla PINNs [◊]	NTK-optimized PINNs $^{\diamond}$	PIKL estimator
L ² relative error Training data (n) # parameters	$\begin{array}{c} 4.52 \times 10^{-1} \\ 2.4 \times 10^{6} \\ 5.03 \times 10^{5} \end{array}$	$\begin{array}{c} 1.73 \times 10^{-3} \\ 2.4 \times 10^{6} \\ 5.03 \times 10^{5} \end{array}$	$\begin{array}{c}(8.70{\scriptstyle \pm 0.08})\times10^{-4}\\10^{5}\\1.68\times10^{3}\end{array}$

PIKL more accurate, requiring fewer data points and parameters

Opening: PIKL vs. PDE solvers

Performance of traditional PDE solvers for the wave equation on $\Omega = [0,1]^2$

	Euler explicit	RK4	CN	PIKL
L ² relative error Training data (n)	$\frac{3.8\times 10^{-6}}{10^4}$	${\begin{array}{c} 6.8\times 10^{-6} \\ 10^{4} \end{array}}$	${5.6\times 10^{-3}\atop 10^{4}}$	$\begin{array}{c} 8.70 \times 10^{-4} \\ 10^{3} \end{array}$

Traditional PDE solvers outperform PIKL (even with fewer data)

Performance for the wave equation with noisy boundary conditions

	PINNs	Euler explicit	RK4	CN	PIKL estimator
L ² relative error Training data (n)	$\begin{array}{c} 4.61\times10^{-1}\\ 2.4\times10^{6} \end{array}$	$\begin{array}{c} 1.25\times10^{-1}\\ 4\times10^{4} \end{array}$	$\begin{array}{c} 6.05\times10^{-2}\\ 4\times10^4\end{array}$	$\begin{array}{c} 2.01\times10^{-2} \\ 4\times10^4 \end{array}$	$\begin{array}{c} 1.87 \times 10^{-2} \\ 4 \times 10^{4} \end{array}$

PIKL outperforms PDE solvers under noisy conditions

Conclusion

- Minimizing the empirical risk regularized by a PDE can be viewed as a kernel method
- Physical information can be beneficial to the statistical performance of the estimators
- PIKL: kernel toolbox for physics-informed learning
- Stay tuned: fast PIKL is coming!

In []: pip install pikernel

Thank you!

- [Doumèche, Bach, Biau, Boyer] PIKL paper on arXiv 2409.13786
- [Doumèche, Bach, Biau, Boyer COLT 2024] Kernel paper on arXiv 2402.07514
- [Doumèche, Biau, Boyer Bernoulli 2024] PINN paper on arXiv 2305.01240