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OoD generalization and physical phenomena

Explicit models Implicit models

» Physical models » Agnostic statistical models
» Developed from first principles » Learn from data
» Rely on a deep understanding of the physical » Capture correlations between data features
phenomenon and not between explicit physical variables
» Capture some form of « causality » between » Does not generalize outside the training
well identified physical variables distribution
» Generalize to different contexts

» OoD problem in physics: NNs do not generalize
» Generalization is critical for the adoption of NNs in physics
» Physics complexity in often order of magnitude larger than in classical ML settings

» Cannot be solved with classical ERM
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OoD generalization, modeling physical phenomena, context and examples

» Assumption: one underlying phenomenon - different environments

Modelling epidemics in different countries

Nombre de nouveaux cas de covid-19 par million d'habitants

Moyenne lissée sur sept jours
Royaume-Uni
500 /Pays-Bas

400
300 / /] - _- Portugal

200

Modeling electrophysiology of cardiac tissue from
different patients, Fig. Fresca et al. 2020

Predictions of sea surface
temperature from satellite data, Fig.
Pajot et al. 2018

Sub regions extracted for the dataset. Test regions are regions 17 to 20.

* Complexity of the modeling problem

* Focus of the presentation: solving parametric PDEs
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OoD Generalization: what could be learn from ML?

OoD generalization: Infer causality, improve robustness

OoD adaptation: meta-learning




OoD Generalization in Machine Learning

» M. Arjovski et al 2020 — OoD generalization problem in ML

Slides: L. Bottou invited talk ICLR 2019

We collect data

= at different points in time and in space
= in different experimental settings

= with different biases

environments

Then we shuffle the records and pretend that
they are independent and identically distributed

Nature does not shuffle the data. We do!

Nature does not shuffle the data. We do!

We collect data

= at different points in time and in space
= in different experlmental -

= with differenjb cnu “\mgt\;\
£\ into
Then we shuf a\0sS N
they are - entlcally dlstrlbuted

Get rid of spurious correlations

Leverage the different environments to learn invariant representation

Objective: extrapolate outside the training domain
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OoD Generalization in Machine Learning

Out of distribution (OoD) generalization

How to train models that perform will outside their training distribution

Includes a variety of problems/ approaches

-~

0-shot generalization \
Learn from several environments
Learn environment invariant representations

0-shot: do not use new environment data

in ain
Train (source 5) Test parget 1) J

a

Few-shot adaptation \
Learn from several environments

Learn environment-conditionned models

Few-shot adaptation: with scarce data from a
new environment

in
Test (target T)
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OoD Generalization in Machine Learning

Training set of environments : Dyyqin = {Dy, ..., Dy}
Leverage environment information

0-shot generalization \
» Approaches

Robust estimation (DRO) (Sagawa et al. 2020)

Invariant risk minimization (IRM) (Arjovsky et
al. 2020)

Risk Extrapolation (REx) (Krueger et al. 2021)

» DomainBed benchmark (Gulrajani et al

Callech101 LabelMe SUNDY yOCz g

= e
An Cartoon Photo Sketch
PACS

Office-Home

/ Few-shots adaptation
» Approaches

e.g. meta-learning MAML (Finn et al 2017)

— meta-learning
9 ---- learning/adaptation

VL,
Pl
Vﬁl _‘,-"' H:;

01 ".()__;

Figure 1. Diagram of our model-agnostic meta-learning algo-
rithm (MAML), which optimizes for a representation # that can
quickly adapt to new tasks.

Learn shared parameters 6 from several
environments.Adapt 6, = 0 + §0,, for
environment D,

ERM is as good as any of these strategies;@/
eneralization - a

Complexity: double optimisation process




Tackling the generalization problem for physical dynamics




Generalization for physical dynamics

{ Learn a model for physical dynamics that generalizesJ

to different environments

/> Data often come from the numerical » Data-driven models for spatio-

simulation of PDEs temporal forecasting

» An environment is characterized by: PDE is unknown
< Physics, e.g. multiple PDEs ) Objective: learn forecast models from

Parameters for a given PDE trajectories

Initial value distributions, boundary

\ \conditions, etc )) / \
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Tackling the generalization problem for physical dynamics
Solving parametric PDEs

We consider a class of spatio-temporal partial differential equations dependent on parameters
How to solve parametric equations with data-driven approache!?

Forcing terms - :
PDE coefficient§ | . Implicit modeling \
Explicit modeling Neural Surrogates should generalize to
\ changes in new initial conditions and PDE

= gx t,u, Vu,V%u,...) parameters

Initial cIndition

u(x,t =0) =u’x)

B(bju,Vu,x,t) =0 V(x,t)Eafbwﬁ

!
Boundary type
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Generalization for dynamical systems
Spatio-temporal forecasting — data-driven approches — ER

M approaches

» Training: sample environment parameters / sample trajectories from each environment

)
. — —o()— -+
» Graph Neural Networks === o =

Fig. Brandstetter et al. 2022

v

Neural operators

()[)(‘l'il“ll' network
e plttet

»

I f.]

JILIIdlll
» Foundation models iy
@DISCO B

--»: neural ODE

v

Limited OoD generalization / extrapolation abilities
I
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Fig. Li et al. 2021

Fig. Morel et al. 2025
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Generalization for dynamical systems
Spatio-temporal forecasting — data-driven approches

» OoD generalization

» Requires conditioning on characteristics of the new domain

PDE parameters, e.g. coefficients: prior knowledge

A ‘ a

-

Figure 2. The CAPE module for one type of convolution (residual connections are omitted).

l d attention weights

I Clunml
= - i
£ kemels

.....

d channels

Fine tuning: requires significant amount of data

Posemox: Foundation Model for PDEs

ﬁv q+ “‘ '-(

compresslble incomp. flow

Task-specific
Operator Learning

T g——
2 i
\compressible mcump flow/

LR . ® Poscidon.B
] e — e =S 5 v FNO
P ¥ v .
510 Yuy x
: =
.

g r r & - - § : = Number of

1 61 40 1 61 a 1 4 1 trajectories
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Fig. Takamoto et al. 2023
Learning Neural PDE Solvers with
Parameter-Guided Channel Attention

Fig. Herde et al. 2024
Poseidon: Efficient Foundation Models for
PDEs
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Tackling the generalization problem for dynamical systems:
Conditional Adaptation




Tackling the generalization problem for dynamical systems

» Focus: solving parametric PDEs
» Assumption
» Data come a set of domains E = {ei}
All the domains share the same form of the dynamics modeled by a PDE
One domain corresponds to a spoecific PDE instance
0 What differs across PDE instances: parameters of the dynamics
» Problem : extrapolation

» Learn on a sample of the domains’ distribution — set of PDEs

» Generalize on new domains not seen during training- e.g. new PDE instances

» Methods: few shot adaptation
» How!
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Tackling the generalization problem for dynamical systems

» One particular example of parametric PDEs experimental setting

» Combined equation (Brandstetter 2022) ‘ 5 , , i

. [Oru + Op(u” — BOzu + YOz u)|(t, ) = (¢t x),

Parameters: Coefficients 8 = (a, 5,7)

O Heat equation 8 = (0,7, 0) J

0 Burgers 6 = (0.5,1,0) t,z) =0, wug(x)= Z A;sin(2mljxz /L + ¢;).
j=1

0 KdV (Korteweg—De Vries) 8 = (3,0,1)0,1]

» Obijective: train from a finite sample of the parameters, generalise to new samples
» Training

(a, B,y) sampled in the range ([0,1], [0, 0.04],[0,1]) — each sample corresponds to a PDE instance
» Testing

In-distribution: trajectories from the same parameter range

Out-distribution: trajectories outside the training parameter range
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Tackling the generalization problem for dynamical systems

Multiple environments
» Training

Training stagy

e; € &, with Ny, One-shot adaption

€; € gev

Nad=1

\_ i

Figure 1: Multi-environment setup for the Kolmogorov PDE. The model is trained on multiple
environments with several trajectories per environment (left). At inference, for a new unseen
environment it 1s adapted on one trajectory (right).
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Tackling the generalization problem for dynamical systems
CODA & GEPS frameworks (Kirchmeyer et al. 2022, Kassai et al. 2024)

» Training
Training stage i
e; € &, with Ny, trajectories per environnent | One-shot adaption

>

€N, !

€; € é‘ev

(7]
.9
o
(o]
)
(@)
Aol
[v]
o
)
Q
2
X
=)
>

Nad=1

Figure 1: Multi-environment setup for the Kolmogorov PDE. The model is trained on multiple
environments with several trajectories per environment (left). At inference, for a new unseen
environment it 1s adapted on one trajectory (right).
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Tackling the generalization problem for dynamical systems

New environment: one shot

adaptation

» Adaptation

Training stage |
e; € &, with Ny, trajectories per environnent One-shot adaption

-

v

“Ne i € € &gy

/

Figure 1: Multi-environment setup for the Kolmogorov PDE. The model is trained on multiple
environments with several trajectories per environment (left). At inference, for a new unseen
environment it i1s adapted on one trajectory (right).
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Tackling the generalization problem for dynamical systems

» Inference on a new instance of the PDE
» Fast adaptation through few shot learning

» Given a sample of the new domain, adapt fast to solve IVPs on this domain

One shot adaptation
Context trajectory  New initial condition

Nad=1
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Tackling the generalization problem for dynamical systems:
Meta learning - Gradient based approaches

Kirchmeyer et al., CODA: Generalizing to new Physical Systems via Context-Informed
Dynamics Models, ICML 2022

Kassai et al., GEPS: Boosting Generalization in Parametric PDE Neural Solvers through
Adaptive Conditioning, Neurips 2024




Tackling the generalization problem for dynamical systems

(GEPS, Kassai et al. 2024)

as a function of the number of training environments

ERM baselines vs adaptive conditioning

In distribution - Initial Value Problem

Gray-Scott

Gray-Scott Equation

Y

Burgers

Burgers Equation

~

ERM baselines

N ERM baselines
541

)
v

Relative Loss (log scale)
&

9
i

Foundation model

Adaptive d6

& C——

Relative Loss (log scale)

Number of Environments

I

600 800

1000 0 200 400
Number of Environments

—+— CNN —&— MPPDE —&— FNO = Transolver —4— Poscidon —%— GEPS

Figure 2: Comparison of ERM approaches (shades of blue) and Poseidon foundation model (green)

with our framework GEPS (red) when increasing the number of training environments.
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Tackling the generalization problem for dynamical systems
(GEPS, Kassai et al. 2024)

22

ERM baselines vs adaptive conditioning
as a function of the number of training trajectories/ environment

Initial Value Problem
/ Gray-Scott

/ Burgers
Gray-Scott Equation

Burgers Equation

Relative Loss (log scale)
Z
-

le : .
k 200 400 600 800 5\ 200 400 600 800 |M
Number of Trajectorics Number of Trajectorics

=d— CNN —a— MPPDE —&— FNO == Transolver =+ Average —#— Puoscidon - GEPS

Figure 3: Comparison of ERM approaches (shades of blue) and Poseidon (green) with our framework
GEPS (red) when increasing the number of trajectories per environment.
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Tackling the generalization problem for dynamical systems
(GEPS, Kassai et al. 2024))

4 )

ERM baselines vs adaptive conditioning

> Out of Distribution - IVP

Fine tuning or Adapting on one trajectory for the new
environment

\_ J

Pretrained on 4 environments (Gray-Scott) Pretrained on 1024 environments (Gray-Scott)

2x107?
0.432
4x107 0.136
-1
N 3x10 0.242 . QT 0.100
22x107 E 0.080
s ® -
* K] 6x 10
10-} 0.096
=2
0.063 A%1071 9034
6 x 10'1 - 3 10-2 -
GEPS POSEIDON CNN T-SOLVER * GEPS POSEIDON T-SOLVER CNN
0 Pretrained on 4 environments (Burgers) 2 Pretrained on 1024 environments (Burgers)
10 2x1077
0.854 01
0.781
0.136
~ 6x 1077 o
v v
= ] 107!
s 4x107? %
&
3x107? 0.278
6x 107 0.054
2x1071 - |
GEPS CNN T-SOLVER GEPS CNN T-SOLVER

BN GEPS @ T-SOLVER @ CNN @mm POSEIDON

Figure 4: Out-distribution generalization on 4 new environments using one trajectory per environment
for fine-tuning or adaptation. Models have either been pretrained on 4 environments (left column) or
1024 environments (right columns). Metfric is Relative L2 loss.
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Tackling the generalization problem for dynamical systems
(GEPS, Kassai et al. 2024)

ERM baselines vs adaptive conditioning
In and Out of distribution
Context: historical data

Table 1: In-distribution and out-distribution results comparing different history window sizes. Metric
is the Relative L2 loss.

History — 3 5 10

Method In-d Out-d Ind Out-d nd [ Oud )
Burgers equation

Transolver 1.95e-1 3.22e-1 1.12e-1 3.03e-1 5.64e-2 2.49e-1
FNO 4.28e-1 7.68e-1 3.07e-1 6.43e-1 6.13e-2 2.55e-1
CNN 1.84e-1 4.44e-1 1.62e-1 3.34e-1 3.16e-2 6.32e-2
GEPS 1.25e-2 1.63e-2 8.61e-3 1.04e-3 6.14e-3 8.73e-3
Gray-Scott equation

Transolver 1.82e-1 4.33e-1 9.88e-2 3.90e-1 9.57e-2 3.60e-1
FNO 1.86e-1 4.67e-1 1.76e-1 3.87e-1 1.93e-1 4.03e-1
CNN 7.12e-2 3.51e-1 5.96e-2 2.18e-1 6.54e-2 2.23e-1
GEPS 4.02¢-2 5.78e-2 3.04e-2 5.02e-2 3.82¢-2 8 S.14e-2 P
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Tackling the generalization problem for dynamical systems
CODA framework (Kirchmeyer et al. 2022)

» How to: Intuition

» Learn to condition the learned function fge on the environment e

€4
: : , €4 -0 -
» So that it could adapt fast and with a few samples to a new environment N &
» Adaptation rule:|0¢ = 6° + §0° ac 9% GJQ(‘M“MV\
0¢ shared parameters trained on a sample of the environment distribution O" \
[0 i.e. on a set of trajectories sampled for sampled from a set of environments @Q?, O@e .

d60°¢environment specific parameters infered for each new environment

» Under two key constraints
» C1:Locality constraint for small weight deviation §0°¢: fast convergence
» C2:Low Rank Adaptation: adaptation performed in a small dimensional parameter subspace: for
sample and parameter efficiency
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Tackling the generalization problem for dynamical systems
CODA framework (Kirchmeyer et al. 2022)

» Dynamical function for domain e
» [fge with 8¢ = 0° + 60°

» Training objective

| min ¥ 166°12 s.t. v € D8, v, 258 = oo soe(x€(D))
0¢,50¢,ecE ~¢EPTrain - Y a7/ 07400

C1: Locality constraint min||§0¢]|%: 8¢ should lie in the neighborhood of 6°¢
e

C2: Low rank adaptation - Small intrinsic dimensionality for §6°
O Implemented by learning a code specific to each environment + hypernetwork

066° generated via a hypernetwork:[§6¢ = WE®

» Compact code &€ infered for each domain through auto-decoding, W are shared
parameters
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Tackling the generalization problem for dynamical systems
CODA framework (Kirchmeyer et al. 2022)

» Training objective

min > IWEeI st v € e, vt G e (x6()
QC,W,€e;eEE .L. ) ) dt ) +W€
eEDTrnin

In green: shared parameters across the environments

In red: environment specific parameters

» Adaptation objective (inference)

min z IWE€||? s.t. Vx© € D¢, Vt @ = foc e(xe(t))
0C,W,é€;e€E - PR gy T S 0T+We

eEDTrnin

Adaptation is sample efficient and converges with few gradient steps

Reuses the knowledge from training domains
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Tackling the generalization problem for dynamical systems
CODA framework (Kirchmeyer et al. 2022)

» Conditioning to an environment

» Inference: for a new environment, shared parameters 8¢ and I/ are fixed, learn code &€ in few shot
and infer 6°

a0°

1I

0°
o =1 AN N
e Ngz\nplork E E ////_Zi\\
) - | E @)\X)
{w,0°} - éi: Ll
Hypernetwork: generates / = T e
the §A°¢ — )
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Tackling the generalization problem for dynamical systems
CODA framework (Kirchmeyer et al. 2022)

» Dynamical function for environment e
» fge with 8¢ = 0° + 50°
* Lotka-Voltera ODE

* Loss landscape for 3 environments

* Centered on the shared 6°
* Local min  indicated by

6.30e-04 3.91e-05 4.96e-05

» Effect of the locality contraint Figure 1. CoDA’s loss landscape centered in 6°, marked with x,
» Small §0:  close to O° for 3 environments on the Lotka-Volterra ODE. Loss values are
projected onto subspace W, with d¢ = 2. Ve, — points to the

» Convex landscape : O ,
local optimum 6“™ with loss value reported in yellow.

» Fast adaptation
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Tackling the generalization problem for dynamical systems
CODA framework (Kirchmeyer et al. 2022)

Lotka-Volterra (LV, Lotka, 1925) The system describes
the interaction between a prey-predator pair in an ecosys-
tem, formalized into the following ODE:

1.25
4 I 20%
1.00
- 10 %
03 L 50 M
2
3%
0.50 {55
1.5 %
0.25 4 D
0.25
/;-— —-._:*e.{
/o—-——"“
s
=y
(S5
—— Ground truth " ——— Adaptation w:ti1 CoDA -
Figure 2. Adaptation results with CoDA-£; on LV. Parameters
(3,0) are sampled in [0.25,1.25] on a 51 x 51 uniform grid,
leading to 2601 adaptation environments &,q4. # are training envi-
ronments . We report MAPE (/) across &, (Top). On the bot-
tom, we choose four of them (x, e;—e4), to show the ground-truth
(blue) and predicted (green) phase space portraits. x, y are respec-
30 tively the quantity of prey and predator in the system in Eq. (15).

Generalization - adaptation - PDE surrogates

2—3 = ax — Bxy

t (15)
.@ :61‘ =

dt Y =YY

where x, y are respectively the quantity of the prey and the
predator, «, 3, d, 7 define how two species interact.

Four parameters, two fixed (, y) and two
(B, 6) change accross environments
Training on 9 environments
Top: Evaluation on 2600 new environments
Bottom: phase portraits for 4 new
environments e{to e,

* Blue trajectories: ground truth

* Green trajectories: predicted

2025/06/18



Tackling the generalization problem for dynamical systems
CODA framework (Kirchmeyer et al. 2022)

» Visualization for Lotka-Voltera with a code € of size 2

» Learned code £°€is « isomorphic » to the 2 D parameter space

Context-Informed Dynamics Adaptation (CoDA) Application to Lotka-Volterra Systems
Learned context for dynamics adaptation Phase space portraits

010 =
5|1 /&\\\Y W \\
‘I 0.05 é ﬁ:\
= 5
.g % f /;.\
[}
£ 000 - l? ’\
e
c
7 ‘J }
1-0.05 -
\,./
g e N
-010 1, , : ] , —
—010  -005 000 005 010 — State dimension 1 (x)
« Context dimension 1 — —— Ground truth
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Tackling the generalization problem for dynamical systems
CODA framework (Kirchmeyer et al. 2022)

» Quantitative evaluation on extrapolation
» Evaluation: MSE for |-shot adaptation

» Baselines: Multi-task and Meta-Learning

Method Lotka- Glycolic- Gray-Scott Navier-
Voltera Oscillator Stokes
(10°5) (10~ (103) (1074)
Multi-task LEADS 47.61 113.8 .36 28.6
Meta-learning MAML 3150 108 2.25 48.6
Contextual CAVIA 6.26 2.37 1.62 26.0
meta-learning
CODA 1.24 1.86 0.74 9.65
» Message

» Dedicated strategy, adapted to the complexity of physics problems performs better than general
purpose ML generalization/ adaptation
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Tackling the generalization problem for dynamical systems:
Generative approaches

ZEBRA: In-context generative pretraining for solving parametric PDEs (Serrano et al.
ICML 2025)




ZEBRA - In-context generative pretraining (Serrano et al. 2025)

» Inspired by In-context learning in NLP decoders (LLMs)

EEN=t Input: 2014-06-01 -
In addition to the task description, the model sees a few Output - 19619112014 !

examples of the task. No gradient updates are performed. In put - 2007-12-13 . g
Output: !1211312007! | [M-contex

Translate English to French: task description Input . 2010-09-23 examples
sea otter => loutre de mer examples Output . | 69 | 23 | 2@1@| i
peppermint => menthe poivrée Input: 2005-07-23 test example
plush girafe => girafe peluche OUtpUt : 10712312005!
cheese => prompt I
« — — model completion
Fig. Brown et al. 2020 (GPT3) Fig. https://ai.stanford.edu/blog:...

No gradient update — only context
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ZEBRA - In-context generative pretraining (Serrano et al. 2025)

[How does in-context learning works: Two main interpretations

a Gradient update interpretation

Dai et al. ACL 2023.Why can, GPT learn in context ?

Interpret LLM as meta-optimizers that perform implicit fine tuning for in-context examples.

Transformer attention has a dual interpretation as gradient descent in the linear attention case.

/ Bayesian interpretation

Xie et al. https://ai.stanford.edu/blog/understanding-incontext/

Pretraining learns latent concept distributions, inference identifies the promp latent concept

p(output|prompt) = f p(output|concept, prompt)p(concept|prompt)d(concept)

concept

o

2N

/
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ZEBRA - In-context generative pretraining (Serrano et al. 2025)
Inference

\‘z‘enerated Trajectory

;
Ll

Initial condition

.« DeTokenize

1:m

| z
Time k / [ 5!
- generated tokens

_ v o ! _
‘ Tokenize Tokenize ‘ -fegressive

Context trajectory: trajectory from the same PDEs starting from another Initial Condition
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ZEBRA - In-context generative pretraining (Serrano et al. 2025)

Inference

ﬂontexr trajectory \ ( \ '
Initial condition E .
! o
]
! L

\ s
v o !

Time & / [ sl
e J generated tokens
Tokenize Tokenize ‘

-fegressive
peration

.« DeTokenize

___________________________

37 Generalization - adaptation - PDE surrogates 2025/06/18



ZEBRA - In-context generative pretraining (Serrano et al. 2025)
Inference: discrete model i.e. LLM structure

ﬂontexr trajectory \ / \

Initial condition

Thkne
l‘v—i v
r N\ (

Tokenize Tokenize ‘ - egressivé

81 ] ‘ i

The transformer
operates on

discrete tokenized
representations of
the data
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ZEBRA - In-context generative pretraining (Serrano et al. 2025)

» Transformer is a Llama like architecture

Output: Next-token probabilties Gama block \

i S ol S S O O O

|

Sofimex ‘ LayerNorm ‘
A A A A A A A A A 4 A ¥ ZEBRA learns
Linear [Multi-Head Attention } tra ] ecto I’)’

A A A A A A A A A A4

Llama block (x 8 )

distributions

‘T“

A A A A A A A A A 4 4 | LayerNom |
Embedding layer ] ¢
A A A A A A A A AL A N
E?P%E <bot> |8 | <eot> .. <bot> <eot> <bot> <eot> §§e9§?j
9 J

input: Sequence of indices
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ZEBRA - In-context generative pretraining (Serrano et al. 2025)

Training: 2 steps
o Toenimton |

} ——
Input: physical field HIHI I
' | codes 1234 K) quantized codes

Encode-decode:VQVAE o ’

'
quantization

Maps a frame to a finite set of el -
(2) In-context Pretraini_

tokens
Trajectories sharing the same dynamics

Irjectoryt / \ Jizjectory.2 Output: Next token probabilties

p(52) p(Ss) p(8s) p(Ss) p(Sw)

ot ottt 1
Sy Sa S'3 Si - Sn-1 SN

Input: Sequence of indices

Processor: LLM III
Predicts discrete distribution me ﬁ,x
¢ " \ tokens

of tokens - ™ Totons e P
Training IOSS: Cross entropy EE .......................................................................................

;

;
-
:
.
:

b

—.--106/18

40 GJEneranzaton - agaptation - rorc surrogates



ZEBRA - In-context generative pretraining (Serrano et al. 2025)

Examples

4|

[ Heat equation ]

081

Context prompt Initial condition

— e

3
B
~0.25 1

—0.50 1

=0.75 1

Prediction

Figure 26: One-shot adaptation on Heat

Generalization - adaptation -

[ Combined equation ]

jl Context prompt WM Initial condition

— e 2

\\ = 061
0.4 \ — et
y A\ -y

0.4 t

0.2

0.0 T

0.2+

-0.4

-0.6

-0.8

0.8
06
/

0.4 1
02
H

0.0
-0.2
-0.4

-0.6

-0.8 1

Figure 30: One-shot adaptation on Combined
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ZEBRA - In-context generative pretraining (Serrano et al. 2025)
Examples

[ Vorticity ]

Context prompt .
Ground truth .

Pred t=9
.

Predictions

Figure 35: One-shot OoD adaptation on Vorticity. Example 1.
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ZEBRA - In-context generative pretraining (Serrano et al. 2025)

evaluation

> Table 1: One-shot adaptation. Conditioning from a similar trajectory. Test results in relative L2 on the trajectory. ‘-

indicates inference has diverged.

[

Advection  Heat  Burgers Waveb Combined Wave 2D  Vorticity 2D
Gradient based  CAPE 000941 0223 0213 0978  0.00857 _ -
adaptation ___CODA_J 000687 0546 0767 1020 00120 0777 0.678
Visual [CLS] ViT 0.140  0.136 0116 0971 00446 0.271 0.972
transformers ViT-in-contexk  0.0902 0472 0582 0472  0.0885 0.390 0.173
ebhia 0.00794  0.154  0.115 _ 0.245 _ 0.00965 __ 0.207 0.119

Table 2: Out-of-distribution results. Test results in relative
L2 on the trajectory. ‘—* indicates inference has diverged.

Heat Wave 2D Vorticity 2D

close  far
CAPE 0.47 - - -
CODA 1.03 1.51 1.71 -
ViT-in-context 0.52 0.68 0.30  0.368
Zebra 0.15 0.68 0.24 0317
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ZEBRA - In-context generative pretraining (Serrano et al. 2025)
Trajectory generation

» Trajectory generation: prompting with an in-context example, generate a trajectory without
giving an initial condition

» The distributions of the generated and actual data are similar (combined equation)

[ t=0 t=9
PCA at time t=0 PCA at time t=9
L] @ Generated Data @ Generated Data ®
Generated ool Data o RedDas  * .
. . . -
distribution
$ L HIE
: S
Q LY '. . S
Target sl . . 5
distribution .
PCA Component 1 PCA Component 1
(a) Distribution of generated initial conditions (¢ = 0). (b) Distribution of generated trajectories at (¢ = 9).

Figure 19: Qualitative analysis of generated trajectories. Zebra generates new initial conditions and trajectories for unseen
test environments. PCA projections visualize both generated and true trajectories in a lower-dimensional space at { = 0 and
t=9.
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ZEBRA - In-context generative pretraining (Serrano et al. 2025)
Trajectory generation

» Trajectory generation: prompting with an in-context example, generate a trajectory without
giving an initial condition

» Example Vorticity 2D

Prompt

Generated
trajectory

Figure 18: Unconditional generation on Vorticity 2D. The top-row is the example used to guide the generation, and the
bottom-row is the generated example. The model also generates the initial condition.
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ZEBRA - In-context generative pretraining (Serrano et al. 2025)

Uncertainty quantification

» Example: Heat equation

» Generate multiple trajectories: mean trajectory and confidence interval +/-3 standard

deviation

Mean prediction and confidence interval

Mean, Time 0

2.0 4 Mean, Time 1
Mean, Time 2

Mean, Time 3

Mean, Time 4

Mean, Time 5

1.5 1 Mean, Time 6
Mean, Time 7

Mean, Time 8

—— Gt, Time: 9
1 0 A — Mean, Time: 9

Mean % 3xStd, Time: 9

0.5 1

0.0 1

—0.5 1

—1.0 1

Quantitative evaluation: CRPS and RMSCE

0 50 100 150 200 250

4Figure 16: Uncertainty quantification with Zebra in a one-shot setting on Hear equation
o

« CRPS and RMSCE Results

Metric Model Advection Heat

CRPS  VIiT + noise 0.0705
VIiT Dropout 0.0363
Zebra 0.0026

RMSCE VIT + noise 0.132
ViT Dropout 0.386

Zebra 0.074

0.176

0.213

0.043

0.241

0.547

0.055

Burgers Wave b Combined

0.227

0.196

0.020

0.265

0.529

0.048

0.093

0.024

0.0129

0.249

0.340

0.124

CRPS: Continuous Ranked probability Score: accuracy of forecast
RMSCE: Root Mean Squared Calibration Error: calibration of the forecast
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0.098

0.024

0.0018

0.045

0.064

0.074
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Tackling the generalization problem for dynamical systems:
Generative approaches

ENMA:Tokenwise Autoregression for Generative Neural PDE Operators (Kassai et al.
2025)




ENMA: Tokenwise Autoregression for Generative Neural PDE Operators (Kassai et al.
2025)

Two main families of generative models are competing for
large scale applications for vision and NLP

Auto-regressive discrete models
leveraging LLMs
* Initially developed for NLP (e.g. GPT .
decoders) and more recently adapted to
vision - Leverage discrete tokens

Continuous one shot models, e.g.
diffusion models
Initially developed for image and video

generation (e.g. Stability Al's Stable Diffusion,
OpenAl DALL-E, Google Imagen)

Comparison for video generation

Advantage: Scalable to longer videos, less GPU Advantage: Strong temporal coherence across
memory required per step. frames. No error accumulation over time.
Disadvantage: Risk of temporal drift, flickering, Disadvantage: Memory- and compute-intensive,
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ENMA: Tokenwise Autoregression for Generative Neural PDE Operators (Kassai et al.
2025)

Auto-re

Dt models, e.g.

* |nitial
la[Yelo]e
vision

and video
table Diffusion,
gen)

Advantage: age: Strong temporal coherence across

memory requiiis frames. No error accumulation over time.
Disadvantagdi Disadvantage: Memory- and compute-intensive,
or inconsistenciSs especially for long or high-res videos
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ENMA: Tokenwise Autoregression for Generative Neural PDE Operators (Kassai et al.
2025)

» Autoregressive generation is a natural approach for temporal/ spatio-temporal modeling

» Current generative autoregressive models leverage discrete LLM models for predicting
discrete probabilities

» Loss of information due to discrete tokens encoding

Abstract
VTBench: Evaluating Visual Tokenizers for

Autoregressive Image Generation Autoregressive (AR) models have recently shown strong performance in image
generation, where a critical component is the visual tokenizer (VT) that maps
HurweiLisl  TongGengi  ZhasabaoXu®  Vieje Zhao! continuous pixel inputs to discrete token sequences. The quality of the VT largely
o "““('.,éz"h'“/f“i“:x:‘zw e defines the upper bound of AR model performance. However, current discrete VTs
& B ot Kirgns e e omesiaf ik fall significantly behind continuous variational autoencoders (VAEs), leading to
P Abstract degraded image reconstructions and poor preservation of details and text. Existing
< Autorgresine (AR) models v ey shown sion pefomanc: nimage benchmarks focus on end-to-end generation quality, without isolating VT perfor-

mance. To address this gap, we introduce VTBench, a comprehensive benchmark

v

Operating in a continuous space appears more natural for modeling physical dynamics

v

ENMA explores autoregressive models operating in a continuous space
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ENMA: Tokenwise Autoregression for Generative Neural PDE Operators (Kassai et al. 2025)

Flow matching

KGenerative approach that
* Learns a probability path p;(z) from a source distribution p,y(z) to a target one p;(2)

p:(z) is modeled with continuous-time velocity field vy (z, t), describing the instantaneous
velocity of samples z(t)
* vy(z,t) is trained to approximate a target velocity field defined by an ODE —= (t) v*(z,t)

o

@ample with a linear interpolation trajectory

z(t) =1 —-t)e+tz, e~py(z) =N(0,1),z~p,(2)

vi'(z,t) =z—¢€
Training loss
L(8) = Eepylllve (2(6),£) = v(z, OI12] = Ee 5 [llvg (2(6),6) — 2 — €]?]

Inference
Sample e~N' (0, 1)

k Solve the IVP % = vg(z(t),t), z(0) = € to obtain a sample from the target distribution p;

)\
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ENMA: Tokenwise Autoregression for Generative Neural PDE Operators (Kassai et al. 2025)

Discrete vs continuous token distribution forecasting

» Consider a frame with M tokens Z = (z4, ..., Zy)

/

-

* p(z; = kl|c;) = softmax (logit(c;, k))
* logit(c;, k) is the logit corresponding to

4 )
Next token prediction p(zy, ..., zy) = Yo, (2| 2<;)
How p(z;|z.;) is modeled:
* Compute a context ¢; = f(z4, ..., Z;), €.g. With a transformer
* Model next token probability p(z;|c;)
- /
N ( Continuous case

Discrete case
Zi € {1, ,K}

dz(t)

Solve
dt

class k ) \_

Zj € Rd
Sample e~N (0, 1)

~

= vg(z(t),t,c;),z(0) = € to get

a sample z;

/
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ENMA: Tokenwise Autoregression for Generative Neural PDE Operators (Kassai et al. 2025)
From Autoregression to to masked autoregression (Li et al. 2024 - https://arxiv.org/abs/2406.11838)

_—
EEEENEEEEER

Left-right
autoregressive

MLP
€ Flow Matching “s
€ o Z5, 212,214

Flow Matching
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ENMA: Tokenwise Autoregression for Generative Neural PDE Operators (Kassai et al. 2025)
General structure

: Generative contiunous
Continuous encoder

transformer Continuous decoder
Generation \‘ -
process
b e \f frarfes Flow Matching
—> i
) al]l..l' O Spatial |
% Spatial J mgsmri::ive i
3 Transformer
Zi ‘ [ N { I [ [ ] I ] [ [ I ‘ MASK Continuous VAE
¢ ! A ; detokenizer
: J Continuous VAE Spatio-Temporal i
% ; tokenizer Causal Transformer
I lar input grid i i
i s ‘ E— - Temporal autoregressive O o
Z F__TEFL_TQ__TEFLI ‘ eneration '
- P .g. ..... n .................. zoT

\_ N W S =
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ENMA: Tokenwise Autoregression for Generative Neural PDE Operators (Kassai et al. 2025)
General structure

Fixed size latent representation
of the spatio temporal context

Yo A

Generation 5L T
process z E:ET[D:D
gxysfmiﬁcld 3 =
Historical context = o S O
L frames | u ool e |
2 5 Transformer

\—]

\L:'m bl [LLLLLTL LT LT LT ] s Continuous VAE

- r detokenizer

Continuous VAE Spatio-Temporal

tokenizer Causal Transformer

T
Trregular input grid l L =
R R Temporal autoregressive O f
Zgos generation 1
L _____ B et :
\ zO:L-l [Zm,z'”'“ | J
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ENMA: Tokenwise Autoregression for Generative Neural PDE Operators (Kassai et al. 2025)
Generative component

Masked autoregressive
generation

Generation
process

Physical field L Flow Matching
- MLP

' - =
Spatial corfbari

Transformer

Continuous VAE spatio-Tempora r
tokenizer Causal Transformer
! \
zll:L-l lzm'zﬂzl.—l ]
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ENMA: Tokenwise Autoregression for Generative Neural PDE Operators (Kassai et al. 2025)
Generative component

Inference

Stochastic comPonent i TR N
Flow matching X

1
/ Zyv = ZEN,) Zy \
|N:| = 3 tokens = VA
selected from the M ZL
spatial tokens
Deterministic component B iorenressive
: Spatial Transformer a “oe
Masked AR spatial &~/ generation
transformer T T

\z{;,, [MASK]
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ENMA: Tokenwise Autoregression for Generative Neural PDE Operators (Kassai et al. 2025)
Generative component - iterations

in =Z'[N) iy

| NG| = 5 tokens MM EUID

selected

Spatial Transformer O Spatial Transformer O
Zi [[[[[ sk J}e—- L % [ mesq [ fe——
|:| Masked tokens m Predicted tokens for generation |:| Selected tokens for generation

Figure 19: Ilustration of tokenwise autoregressive generation at inference with a spatial Transformer

over S = 4 steps. At each step, a subset of tokens is selected for generation based on a cosine
schedule.
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ENMA: Tokenwise Autoregression for Generative Neural PDE Operators (Kassai et al. 2025)
Evaluation

» In and out distribution performance

Table 2: Comparison of model performance for temporal conditioning and initial value problem tasks
across 5 dynamical systems. Metrics in Relative MSE. Lower is better.

Setting | Dataset — Advection Combined Gray-Scoftt Wave Vorticity

Model | In-D Out-D  In-D Out-D In-D  Out-D In-D Out-D  In-D  OQOut-D

FNO 2.47e-1 7.95e-1 1.33e-1 2.66e+1 5.04e-2 1.92e-1 6.9le-1 2.64e+0 6.07e-2 2.15e-1

BCAT 5.55e-1 9.23e-1 2.68e-1 9.28e-1 3.74e-2 1.57e-1 2.19%e-1 5.38e-1 5.39e-2 3.00e-1

Temporal Conditionin AVIT 1.64e-1 5.02e-1 5.67e-2 3.05e-1 4.26e-2 1.68e-1 1.57e-1 5.88e-1 1.76e-1 3.77e-1
P g AR-DIiT 2.36e-1 8.56e-1 2.95e-1 1.80e+0 3.69-1 4.99-1 1.12e+0 7.52e+0 1.98e-1 4.80e-1
Zebra 204e-1 13940 1822 220e+0 42le-2 1R2%-1 1.40e-1 3. 15e-1 4.43e-2 2 23e-1

ENMA 3.95e-2 5.30e-1 7.86e-3 1.02e-1 3.40e-2 1.44e-1 1.45e-1 4.89e-1 7.58e-2 3.45e-1

In-Context ViT 1.15e+0 1.20e+0 5.79e-1 1.36e+0 6.90e-2 1.94e-1 1.72e-1 6.2de-1 1.53e-1 3.92e-1
[CLS] ViT 1.15e+0 1.36e+0 9.60e-2 1.16e+0 4.80e-2 2.19e-1 5.56e-1 1.02e+0 4.30e-2 2.59%-1
Zebra 3.16e-1 1.47e+0 478e-2 9.63e-1 4.40e-2 1.22e-1 1.69%-1 3.52¢-1 590e-2 2.29¢-1
ENMA 2.02¢e-1 8.07e-1 1.56e-2 3.30e-1 4.80e-2 1.34e-1 1.54e-1 5.02e-1 8.58e-2 3.20e-1

Initial Value Problem
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ENMA: Tokenwise Autoregression for Generative Neural PDE Operators (Kassai et al. 2025)
Evaluation

ENMA requires only a small number of autoregressive steps (Left) and flow

matching steps (right)

(Combined equation)

4
Relative L2 vs. Number of Autoregressive steps S Relative L2 vs. Number of FM steps
—e— ENMA 0.0110+4 —e— ENMA
0.0105 1
0.0100
~
g 10~} E 0.0095 4
£ 2
T © 0.0090 -
“ E
0.0085 4
0.0080
: ko ? T ¢ 0.0075
1 2 4 . I 10 12 14 16
Number of autoregessive steps 2 5 10 20 30 40 50
Number of FM steps
Figure 25: Relative L2 error as a function of the . :
number of autoregressive steps S. Performance Figure 26: Relative L2 error versus number of flow
improves markedly around S = 6 and plateaus matching steps per token. Performance quickly
thereafter. stabilizes after 5 steps.
60
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ENMA: Tokenwise Autoregression for Generative Neural PDE Operators (Kassai et al. 2025)
Uncertainty quantification

» Generate multiple trajectories and compute statistics

RMSCE evolution per time step

RMSCE over time
Method Metric Combined
. RMSCE 2.68e-1

AR-DIT CRPS 1.27e-2

RMSCE  2.19-1 T e P F
Zebra —

CRPS 9.00e-3 (a) RMSCE evolution over time. Lower values indi-

cate better uncertainty calibration.

ENMA (OUI‘S) RMSCE 8'68e-2 — CRPS evolution per lime step

CRPS 1.70e-3 R I

Table 12: Comparison of uncertainty metrics (] is
better) for Combined.

CRPS over time

2 4

L] 10 12 14 16
Time Step

(b) CRPS evolution over time. Lower values reflect
sharper and more accurate forecasts.
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ENMA: Tokenwise Autoregression for Generative Neural PDE Operators (Kassai et al. 2025)
Examples: Gray Scott

In-distribution Out-of-distribution

ENMA vs Ground Truth Parameters: F =0.0332, k= 0.0607
ENMA vs Ground Truth Parameters: F = 0.0467,k = 0.058

t=5
-
E 0.75 E
.75
'g 0.50 g
= = 0.50
H 0.25 g
=1 0.25
o 0.00 g
&) 0.00
g 10 g
z s 3
& = E 0.5
z :
g 0.0 0.0
& &
1]
g 0.4 ‘E" o4
K ]
w 0.2 = 0.2
E 7]
0.0 = 0.0

Figure 37: Qualitative comparison between ENMA prediction and ground truth for an in-distribution  Figure 39: Out-of-distribution (OOD) generalization for the Gray-Scott equation. ENMA prediction
sample from the Gray-Scott dataset (F' = 0.0323, & = 0.0606). remains consistent despite being evaluated at unseen parameters (F' = 0.0467, k = 0.058).
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ENMA: Tokenwise Autoregression for Generative Neural PDE Operators (Kassai et al. 2025)
Examples: vorticity

In-distribution Out-of-distribution

ENMA vs Ground Truth Parameters: v=0.0019 ENMA vs Ground Truth Parameters: v = 0.0007

t=21
£ =

E z

& g

° Q |

-

i g ~

3 g

: ;

E g |

ig =]

: :

= =

w

H H
Figure 43: Qualitative comparison between ENMA prediction and ground truth for an in-distribution Figure 45: Out-of-distribution example from the Vorticity dataset (» = 0.0007), highlighting ENMA’s
sample from the Vorticity dataset (v = 0.0019). robustness in extrapolating vortex dynamics.
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Whats next: foundation models

4 The Well: a Large-Scale Collectionof Divere ~ APEBench: A Benchmark for Autoregressive Neural

DrivAerNet++: A Large-Scale Multimodal Car Physics Simulations for Machine Learning Emulators of PDEs
Dataset with Computational Fluid Dynamics
Simulations and Deep Learning Benchmarks Ruben Ohara ', Michocl McCabe ', Lucas Meyer ' Rudy Morel 2,

Fruzsina J. Agocs *f, Miguel Beneitez */, Marsha ncmr 251, Blakesley Burkhart 264
Stuart B. Dakziel !, Drummeond B. Fielding 7, Daniel Fortunato *1,
Jared A. Goldberg 2, Keiva Hirashima 251 \a»-lra.h.-m: 21, Rich R. Kerswell 4,

smml‘?:;'sslﬂdu;".lmn‘l: Hiller™), Pl Mekbopadiong ";Lw::s ixom ! Felix Koehler Simon Niedermayr
Shen ', Romain Waticaw runo Ré Saint Blanca) s . 5 . R . . L .
Mohamed Elrefaic* Florin Morar Francois Razet* 15, Liam H. Parker'15, Miles Cranmer . Shirley Ho 251 Technical University of Munich Technical University of Munich
Department of Mechanical Engineering Morphing and Optimization Solutions Munich Center for Machine Learning simon.niedermayr@tum.de
Massachusetts Institute of Technology BETA CAE SYSTEMS USA, Inc f.koehler@tum.de
Cambridge, MA 02139 USA Farmington Hills, MI 48334 USA
Angela Dai Faez Ahn Dataset CS  Resolution (pixels) n_steps =n_tra Riidiger Westermann Nils Thuerey
Department of Computer Science Department of Mechani acoustic_scatteri (ry) 256 256 00 80 Technical University of Munich Technical University of Munich
\ iy . S ng
chhmca! University of Munich hlnssachusv{lt_s Institute active matter (zy) 256 % 256 81 26
Garching, 85748 Germany Cambridge. MA 0 convective_envelope_rag (rf8)  256x128x256 100 2 Linear Non-Linear React-Diffusion
euler_multi_quadrants (r.y) 512x512 100 10000 Dispersion Burgers Conservative KS Korteweg-de Vries Fisher-KPP
gray_scott_reaction_diffusion (ry) 128128 1001 1200 = — _
helmholtz_staircase (xr,y) 1024 x 256 50 512 o - r—_
MHD (xy.2) 64° and 256° 100 100 - — s
planetsve (6.¢) 256 x 512 1008 120
Parsanatrin Poink Otaads A0 Mash, ?;I;‘.:;frl on_sz‘ar_mrgar (lngr(i:;i & . 1:1!, 17£ Anisotropic Diffusion Burgers gorov Flow Gray-Scott
rayleigh_taylor_instability (ry,.2) 128 % l_ﬁ x 128 120 45
shear_flow (xr,y) 128 x ')G 200 1120
supernova_explosion (r.y.2) 64% and 128° 59 1000
turbulence_gravity_cooling (r.y.2) 64 x 64 x 64 50 2700
Volumetric Fields Surface Fields  Streamlines turbulent_radiative_layer_2D (ry) 128 % 384 101 90

Switt- Gray-Scott

o turbulent_radiative_layer_3D (ry.2) 128 x 128 x 256 101 90
a / 4 viscoelastic_instability (ry) 512x512 variable 260
Unbalanced Advection Burgers
H T:hk: 1: Dataset description: coordinate system (CS). resolution of snapshots, n_steps (number of

& 9&1“:-*‘” per u-a;uﬂur)l n_traj (total number of trajectories in the dataset).
Part Annotation
o
(a) Data modalities of DrivAerNets++. Top row: differ- (b) Selected samples from DrivAerNet++ showing di- . . oy s .
ent data representations; “udd]gm CFD simulation \vmly m shape “.u, d.ng,em car designs (fmback Figure 1: APEBench provides an efficient pseudo-spectral solver to simulate 46 PDE dynamics
results; bottom row: d car comp 2 k, and wheels and across one to three spatial dimensions. Shown are examples visualized with APEBench’s custom
underbody cunﬁgurmons volume renderer.

Figure 1: Data modalities and shape variations in the DrivAerNet++ dataset.

64 Generalization - adaptation - PDE surrogates 2025/06/18



Whats next: foundation models MPP. McCabe et al 2024

Multiple Physics Pretraining Em:ﬁ:u
, Poseidon, Herde et al 2024 o AT fr iing = :
5
Posemox: Foundation Model for PDEs "“nmmpm p! %
Y tme) [ F

wix,€) = glx tin, + plx. e,
+w(x, te, + ulx, e

self-attention

Ww
=

Temporal
self-attention

Figure 1: As opposed to PDE-specific operator learning, our pretrained model POSEIDON is up to
multiple orders of magnitude more sample efficient than a task-specific neural operator while also
being able to transfer to unseen physics during finetuning.

aperalor networ)

!!!! )
/ Create and pre-train on diverse PDE systems Adapt pre-trained model to different \ » &4 18

Vary/Sample all inputs (PDE coefficients, source functions, ...) downstream PDE tasks
Include multiple differential operators, predict PDE solution Solve multiple systems using the same pre-trained + L — P
3 b VTMITTION . COME
V-KVu4v-Vu+ o=f mode!, outperforming training from scratch ’ OF

EE _ EE '\[ .8
=3
LB E i

Inputs
f.K v, 5 Outputs/
o Vp e

— I.I’I'IZ!IE‘

o) DISCO —) Eenerate

) 11 ] &
Wi I.-\--"

DISCO, Morel et al 2024

u

Subramanian et al 2024
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Summing up

» NN generalization for physics
» Critical problem: deserves specific approaches

» Proposed approach: adaptive conditioning
pro: improves over ERM/ Fine tuning

cons: reality gap still to explore

» Extends to other situations, e.g. multiple physics, multi fidelity, in-context continuous distributions,
etc

66 Generalization - adaptation - PDE surrogates 2025/06/18



67

Thank You

Generalization - adaptation - PDE surrogates

2025/06/18



