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Solving PDE in fields physics faster with physics-based machine learning



OoD generalization and physical phenomena
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 Physical models
 Developed from first principles
 Rely on a deep understanding of the physical

phenomenon
 Capture some form of « causality » between

well identified physical variables
 Generalize to different contexts

 Agnostic statistical models
 Learn from data
 Capture correlations between data features

and not between explicit physical variables
 Does not generalize outside the training 

distribution

 OoD problem in physics: NNs do not generalize
 Generalization is critical for the adoption of NNs in physics

 Physics complexity in often order of magnitude larger than in classical ML settings
 Cannot be solved with classical ERM

Explicit models Implicit models



OoD generalization, modeling physical phenomena, context and examples

 Assumption: one underlying phenomenon - different environments
Modelling epidemics in different countries Modeling electrophysiology of cardiac tissue from 

different patients, Fig. Fresca et al. 2020

Predictions of sea surface 
temperature from satellite data, Fig. 
Pajot et al. 2018
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• Focus of the presentation: solving parametric PDEs

• Complexity of the modeling problem



OoD Generalization: what could be learn from ML?

OoD generalization: Infer causality, improve robustness
OoD adaptation: meta-learning
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OoD Generalization in Machine Learning 
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 M.  Arjovski et al 2020 – OoD generalization problem in ML

Invariant Risk Minimization
Get rid of spurious correlations

Leverage the different environments to learn invariant representation
Objective: extrapolate outside the training domain

Slides: L. Bottou invited talk ICLR 2019 



OoD Generalization in Machine Learning
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0-shot generalization
 Learn from several environments
 Learn environment invariant representations
 0-shot: do not use new environment data

Few-shot adaptation
 Learn from several environments
 Learn environment-conditionned models
 Few-shot adaptation: with scarce data from a 

new environment

Out of distribution (OoD) generalization
How to train models that perform will outside their training distribution

Includes a variety of problems/ approaches



OoD Generalization in Machine Learning
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0-shot generalization
 Approaches

 Robust estimation (DRO) (Sagawa et al. 2020)
 Invariant risk minimization (IRM)  (Arjovsky et 

al.  2020)
 Risk Extrapolation (REx) (Krueger et al. 2021)

 DomainBed benchmark (Gulrajani et al 
2021)

 ERM is as good as any of these strategies

Few-shots adaptation
 Approaches

 e.g. meta-learning MAML (Finn et al 2017)

 Learn shared parameters 𝜃 from several
environments. Adapt 𝜃ୣ ൌ 𝜃 ൅ 𝛿𝜃௘ for 
environment 𝐷௘

 Complexity: double optimisation process

Training set of environments : 𝐷்௥௔௜௡ ൌ 𝐷ଵ, … ,𝐷ே
Leverage environment information



Tackling the generalization problem for physical dynamics



2025/06/18Generalization - adaptation - PDE surrogates8



Generalization for physical dynamics

2025/06/18Generalization - adaptation - PDE surrogates9

 Data often come from the numerical
simulation of PDEs

 An environment is characterized by:
 Physics, e.g. multiple PDEs
 Parameters for a given PDE
 Initial value distributions, boundary

conditions, etc

 Data-driven models for spatio-
temporal forecasting
 PDE is unknown
 Objective: learn forecast models from

trajectories

Learn a model for physical dynamics that generalizes
to different environments



We consider a class of spatio-temporal partial differential equations dependent on parameters
How to solve parametric equations with data-driven approache?

Neural Surrogates should generalize to 
changes in new initial conditions and PDE 
parameters

High viscosity

Low viscosity

Implicit modeling

Tackling the generalization problem for physical dynamics
Solving parametric PDEs

10

డ௨
డ௧
ൌ 𝑔ሺ𝑐, 𝑓; 𝑥, 𝑡,𝑢,𝛻𝑢,𝛻ଶ𝑢, . . . ሻ

𝑢ሺ𝑥, 𝑡 ൌ 0ሻ ൌ 𝑢଴ሺ𝑥ሻ

Explicit modeling

𝐵ሺ𝑏;𝑢,𝛻𝑢, 𝑥, 𝑡ሻ ൌ 0 ∀ሺ𝑥, 𝑡ሻ ∈ 𝜕Ω ൈ ℝ∗
ା

Initial condition

PDE coefficients
Forcing terms

Boundary type
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Generalization for dynamical systems
Spatio-temporal forecasting – data-driven approches – ERM approaches
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 Training: sample environment parameters / sample trajectories from each environment

 Graph Neural Networks

 Neural operators

 Foundation models

 Limited OoD generalization / extrapolation abilities

Fig. Brandstetter et al. 2022

Fig. Li et al. 2021

Fig. Morel et al. 2025



Generalization for dynamical systems
Spatio-temporal forecasting – data-driven approches
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 OoD generalization
 Requires conditioning on characteristics of the new domain

 PDE parameters, e.g. coefficients: prior knowledge

 Fine tuning: requires significant amount of data

Fig. Takamoto et al. 2023
Learning Neural PDE Solvers with 
Parameter-Guided Channel Attention

Fig.  Herde et al. 2024
Poseidon: Efficient Foundation Models for 
PDEs



Tackling the generalization problem for dynamical systems:
Conditional Adaptation 
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Tackling the generalization problem for dynamical systems
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 Focus: solving parametric PDEs
 Assumption

 Data come a set of domains 𝐸 ൌ 𝑒௜

 All the domains share the same form of the dynamics modeled by a PDE
 One domain corresponds to a spoecific PDE instance
 What differs across PDE instances:  parameters of the dynamics

 Problem : extrapolation
 Learn on a sample of the domains’ distribution – set of PDEs
 Generalize on new domains not seen during training- e.g. new PDE instances

 Methods: few shot adaptation
 How?



Tackling the generalization problem for dynamical systems
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 One particular example of parametric PDEs experimental setting
 Combined equation (Brandstetter 2022)

 Parameters: Coefficients 𝜃 ൌ ሺ𝛼,𝛽, 𝛾ሻ
 Heat equation 𝜃 ൌ ሺ0, 𝜂, 0ሻ
 Burgers 𝜃 ൌ 0.5, 𝜂, 0
 KdV (Korteweg–De Vries) 𝜃 ൌ 3, 0,1 0,1ሿ

 Objective: train from a finite sample of the parameters, generalise to new samples
 Training

 𝛼,𝛽, 𝛾 sampled in the range ሺ 0,1 , 0, 0.04 , 0,1 ሻ – each sample corresponds to a PDE instance

 Testing
 In-distribution: trajectories from the same parameter range
 Out-distribution: trajectories outside the training parameter range



Tackling the generalization problem for dynamical systems
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 Training
Multiple environments



Tackling the generalization problem for dynamical systems
CODA & GEPS frameworks (Kirchmeyer et al. 2022, Kassai et al. 2024)
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Tackling the generalization problem for dynamical systems
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 Adaptation

New environment: one shot 
adaptation



Tackling the generalization problem for dynamical systems
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 Inference on a new instance of the PDE
 Fast adaptation through few shot learning
 Given a sample of the new domain, adapt fast to solve IVPs on this domain

Context trajectory

𝑒௜ ∈ ℰୣ୴

𝑁ୟୢ ൌ 1

Initial condition

 One shot adaptation

Context trajectory New initial condition



Tackling the generalization problem for dynamical systems: 
Meta learning - Gradient based approaches

Kirchmeyer et al., CODA: Generalizing to new Physical Systems via Context-Informed
Dynamics Models, ICML 2022 

Kassai et al., GEPS: Boosting Generalization in Parametric PDE Neural Solvers through
Adaptive Conditioning, Neurips 2024 
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Tackling the generalization problem for dynamical systems
(GEPS, Kassai et al. 2024)
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ERM baselines vs adaptive conditioning
as a function of the number of training environments

In distribution - Initial Value Problem

Gray-Scott Burgers

ERM baselines
ERM baselines

Adaptive conditioning Adaptive conditioning

Foundation model



Tackling the generalization problem for dynamical systems
(GEPS, Kassai et al. 2024)

2025/06/18Generalization - adaptation - PDE surrogates22


ERM baselines vs adaptive conditioning

as a function of the number of training trajectories/ environment
Initial Value Problem

Gray-Scott Burgers



Tackling the generalization problem for dynamical systems
(GEPS, Kassai et al. 2024))
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
ERM baselines vs adaptive conditioning

Out of Distribution - IVP
Fine tuning or Adapting on one trajectory for the new 

environment



Tackling the generalization problem for dynamical systems
(GEPS, Kassai et al. 2024)
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ERM baselines vs adaptive conditioning
In and Out of distribution
Context: historical data



Tackling the generalization problem for dynamical systems
CODA framework (Kirchmeyer et al. 2022)
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 How to: Intuition
 Learn to condition the learned function 𝑓ఏ೐ on the environment 𝑒
 So that it could adapt fast and with a few samples to a new environment

 Adaptation rule: 𝜃௘ ൌ 𝜃௖ ൅ 𝛿𝜃௘

 𝜃௖ shared parameters trained on a sample of the environment distribution
 i.e. on a set of trajectories sampled for sampled from a set of environments

 𝛿𝜃௘environment specific parameters infered for each new environment

 Under two key constraints
 𝐶1: Locality constraint for small weight deviation 𝛿𝜃௘: fast convergence
 𝐶2: Low Rank Adaptation: adaptation performed in a small dimensional parameter subspace: for 

sample and parameter efficiency



Tackling the generalization problem for dynamical systems
CODA framework (Kirchmeyer et al. 2022)
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 Dynamical function for domain 𝑒
 𝑓ఏ౛  𝑤𝑖𝑡ℎ  𝜃௘ ൌ 𝜃௖ ൅ 𝛿𝜃௘ 

 Training objective

 min
ఏ೎,ఋఏ೐;௘∈ா

∑ 𝛿𝜃௘ ଶ
௘∈஽೅ೝೌ೔೙  s.t. ∀𝑥௘ ∈ 𝐷௘ ,∀𝑡, ௗ௫

೐ ௧
ௗ௧

ൌ 𝑓ఏ೎ାఋఏ೐ 𝑥௘ 𝑡  

 𝐶1: Locality constraint min
ୣ

𝛿𝜃௘ ଶ: 𝜃௘ should lie in the neighborhood of 𝜃௖

 𝐶2: Low rank adaptation - Small intrinsic dimensionality for 𝛿𝜃௘

 Implemented by learning a code specific to each environment +  hypernetwork

𝛿𝜃௘ generated via a hypernetwork: 𝛿𝜃௘ ൌ W𝜉௘

 Compact code 𝜉௘ infered for each domain through auto-decoding, 𝑊 are shared
parameters



Tackling the generalization problem for dynamical systems
CODA framework (Kirchmeyer et al. 2022)
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 Training objective

 In green: shared parameters across the environments
 In red: environment specific parameters

 Adaptation objective (inference)

min
ఏ೎,୛,క೐;௘∈ா

෍ W𝜉௘ ଶ

௘∈஽೅ೝೌ೔೙

 s.t. ∀𝑥௘ ∈ 𝐷௘ ,∀𝑡,
𝑑𝑥௘ 𝑡
𝑑𝑡 ൌ 𝑓ఏ೎ା୛క೐ 𝑥௘ 𝑡

min
ఏ೎,୛,క೐;௘∈ா

෍ W𝜉௘ ଶ

௘∈஽೅ೝೌ೔೙

 s.t. ∀𝑥௘ ∈ 𝐷௘ ,∀𝑡,
𝑑𝑥௘ 𝑡
𝑑𝑡 ൌ 𝑓ఏ೎ା୛క೐ 𝑥௘ 𝑡

Adaptation is sample efficient and converges with few gradient steps
Reuses the knowledge from training domains



Tackling the generalization  problem for dynamical systems
CODA framework (Kirchmeyer et al. 2022)
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 Conditioning to an environment
 Inference: for a new environment, shared parameters 𝜃௖  and 𝑊 are fixed, learn code 𝜉௘ in few shot 

and infer 𝜃௘

Dynamics model 𝑓ఏ೐ ൌ 𝑓ఏ೎ାఋఏ೐
performs numerical integrationCompact Code: 

Domain Encoding

Hypernetwork: generates
the 𝛿𝜃௘



Tackling the generalization problem for dynamical systems
CODA framework (Kirchmeyer et al. 2022)
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 Dynamical function for environment 𝑒
 𝑓ఏ౛ with  𝜃௘ ൌ 𝜃௖ ൅ 𝛿𝜃௘

 Effect of the locality contraint
 Small 𝛿𝜃: 𝜽𝒆 close to 𝜽𝒄

 Convex landscape
 Fast adaptation

• Lotka-Voltera ODE
• Loss landscape for 3 environments
• Centered on the shared 𝜽𝒄
• Local min 𝜽𝒆 indicated by arrow



Tackling the generalization problem for dynamical systems
CODA framework (Kirchmeyer et al. 2022)
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

• Four parameters, two fixed (𝛼, 𝛾) and two
(𝛽, 𝛿) change accross environments

• Training on 9 environments (yellow)
• Top: Evaluation on 2600 new environments
• Bottom: phase portraits for 4 new 

environments 𝒆𝟏to 𝒆𝟒
• Blue trajectories: ground truth
• Green trajectories: predicted



Tackling the generalization  problem for dynamical systems
CODA framework (Kirchmeyer et al. 2022)
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 Visualization for Lotka-Voltera with a code 𝜉௘ of size 2
 Learned code 𝜉௘is « isomorphic » to the 2 𝐷 parameter space



Tackling the generalization problem for dynamical systems
CODA framework (Kirchmeyer et al. 2022)
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 Quantitative evaluation on extrapolation
 Evaluation: MSE for 1-shot adaptation
 Baselines: Multi-task and Meta-Learning

 Message
 Dedicated strategy, adapted to the complexity of physics problems performs better than general

purpose ML generalization/ adaptation

Method Lotka-
Voltera 
ሺ𝟏𝟎ି𝟓ሻ

Glycolic-
Oscillator

ሺ𝟏𝟎ି𝟒ሻ

Gray-Scott

ሺ𝟏𝟎ି𝟑ሻ

Navier-
Stokes

ሺ𝟏𝟎ି𝟒ሻ
Multi-task LEADS 47.61 113.8 1.36 28.6

Meta-learning MAML 3150 1081 2.25 48.6

Contextual
meta-learning

CAVIA 6.26 2.37 1.62 26.0

CODA 1.24 1.86 0.74 9.65



Tackling the generalization problem for dynamical systems: 
Generative approaches

ZEBRA: In-context generative pretraining for solving parametric PDEs (Serrano et al. 
ICML 2025)
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ZEBRA - In-context generative pretraining (Serrano et al. 2025)
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 Inspired by In-context learning in NLP decoders (LLMs)

Fig. https://ai.stanford.edu/blog:...

No gradient update – only context

Fig. Brown et al. 2020 (GPT3)



ZEBRA - In-context generative pretraining (Serrano et al. 2025)
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Dai et al. ACL 2023. Why can, GPT learn in context ?
Transformer attention has a dual interpretation as gradient descent in the linear attention case.
Interpret LLM as meta-optimizers that perform implicit fine tuning for in-context examples.

Xie et al. https://ai.stanford.edu/blog/understanding-incontext/

Pretraining learns latent concept distributions, inference identifies the promp latent concept

How does in-context learning works:  Two main interpretations

Bayesian interpretation

Gradient update interpretation



ZEBRA - In-context generative pretraining (Serrano et al. 2025)
Inference
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
Context Trajectory Initial condition

Context trajectory: trajectory from the same PDEs starting from another Initial Condition



ZEBRA - In-context generative pretraining (Serrano et al. 2025)
Inference

2025/06/18Generalization - adaptation - PDE surrogates37

 Forecast trajectory

Autoregressive transformer



ZEBRA - In-context generative pretraining (Serrano et al. 2025)
Inference: discrete model i.e. LLM structure
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

Tokenization

Detokenization

The transformer 
operates on 

discrete tokenized
representations of 

the data



ZEBRA - In-context generative pretraining (Serrano et al. 2025)
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 Transformer is a Llama like architecture

ZEBRA learns
trajectory

distributions



ZEBRA - In-context generative pretraining (Serrano et al. 2025)
Training: 2 steps
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

Tokenization

In-context pretraining

Encode-decode: VQVAE
Maps a frame to a finite set of 
tokens

Processor: LLM
Predicts discrete distribution 
of tokens
Training loss: cross entropy



ZEBRA - In-context generative pretraining (Serrano et al. 2025)
Examples
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 Context prompt Initial condition 

Ground truth Prediction

Context prompt Initial condition 

Ground truth Prediction

Heat equation Combined equation



ZEBRA - In-context generative pretraining (Serrano et al. 2025)
Examples
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Context prompt

Ground truth

Perdiction

Vorticity



ZEBRA - In-context generative pretraining (Serrano et al. 2025)
evaluation
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
In-distribution- one shot adaptation

Out of-distribution- one shot adaptation

Gradient based
adaptation

Visual 
transformers



ZEBRA - In-context generative pretraining (Serrano et al. 2025)
Trajectory generation
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 Trajectory generation: prompting with an in-context example, generate a trajectory without
giving an initial condition

 The distributions of the generated and actual data are similar (combined equation)

Generated
distribution

Target 
distribution

t = 0 t = 9



ZEBRA - In-context generative pretraining (Serrano et al. 2025)
Trajectory generation
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 Trajectory generation: prompting with an in-context example, generate a trajectory without
giving an initial condition

 Example Vorticity 2D

Prompt

Generated
trajectory



ZEBRA - In-context generative pretraining (Serrano et al. 2025) 
Uncertainty quantification
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 Example: Heat equation
 Generate multiple trajectories: mean trajectory and confidence interval +/-3 standard 

deviation
Quantitative evaluation: CRPS and RMSCE

CRPS: Continuous Ranked probability Score: accuracy of forecast
RMSCE: Root Mean Squared Calibration Error: calibration of the forecast



Tackling the generalization problem for dynamical systems: 
Generative approaches

ENMA: Tokenwise Autoregression for Generative Neural PDE Operators (Kassai et al. 
2025)
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ENMA: Tokenwise Autoregression for Generative Neural PDE Operators (Kassai et al. 
2025)
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

Auto-regressive discrete models
leveraging LLMs

• Initially developed for NLP (e.g. GPT 
decoders) and more recently adapted to 
vision - Leverage discrete tokens

Continuous one shot models, e.g. 
diffusion models

• Initially developed for image and video
generation (e.g. Stability AI’s Stable Diffusion, 
OpenAI DALL-E, Google Imagen)

Advantage: Scalable to longer videos, less GPU 
memory required per step.
Disadvantage: Risk of temporal drift, flickering, 
or inconsistency over time

Advantage: Strong temporal coherence across 
frames. No error accumulation over time.
Disadvantage: Memory- and compute-intensive, 
especially for long or high-res videos

Comparison for video generation

Two main families of generative models are competing for 
large scale applications for vision and NLP



ENMA: Tokenwise Autoregression for Generative Neural PDE Operators (Kassai et al. 
2025)
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

Auto-regressive discrete models
leveraging LLMs

• Initially developed for NLP (e.g. GPT 
decoders) and more recently adapted to 
vision - Leverage discrete tokens

Continuous one shot models, e.g. 
diffusion models

• Initially developed for image and video
generation (e.g. Stability AI’s Stable Diffusion, 
OpenAI DALL-E, Google Imagen)

Advantage: Scalable to longer videos, less GPU 
memory required per step.
Disadvantage: Risk of temporal drift, flickering, 
or inconsistency over time

Advantage: Strong temporal coherence across 
frames. No error accumulation over time.
Disadvantage: Memory- and compute-intensive, 
especially for long or high-res videos

Comparison for video generation

Two main families of generative models are competing for 
large scale applications for vision and NLP



ENMA: Tokenwise Autoregression for Generative Neural PDE Operators (Kassai et al. 
2025)
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 Autoregressive generation is a natural approach for temporal/ spatio-temporal modeling
 Current generative autoregressive models leverage discrete LLM models for predicting

discrete probabilities
 Loss of information due to discrete tokens encoding

 Operating in a continuous space appears more natural for modeling physical dynamics
 ENMA explores autoregressive models operating in a continuous space



ENMA: Tokenwise Autoregression for Generative Neural PDE Operators (Kassai et al. 2025)
Flow matching
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Generative approach that
• Learns a probability path 𝑝௧ሺ𝑧ሻ from a source distribution 𝑝଴ሺ𝑧ሻ to a target one 𝑝ଵ 𝑧
• 𝑝௧ሺ𝑧ሻ is modeled with continuous-time velocity field 𝑣ఏ 𝑧, 𝑡 , describing the instantaneous 

velocity of samples 𝑧ሺ𝑡ሻ
• 𝑣ఏ 𝑧, 𝑡  is trained to approximate a target velocity field defined by an ODE ௗ௭ሺ௧ሻ

ௗ௧
ൌ 𝑣∗ሺ𝑧, 𝑡ሻ

Example with a linear interpolation trajectory
𝑧 𝑡 ൌ 1 െ 𝑡 𝜖 ൅ 𝑡𝑧,   𝜖~𝑝଴ 𝑧 ൌ 𝒩 𝑂, 𝐼 , 𝑧~𝑝ଵ 𝑧
𝑣∗ 𝑧, 𝑡 ൌ 𝑧 െ 𝜖

Training loss
𝐿 𝜃 ൌ 𝐸ఢ,୸,୲ 𝑣ఏ 𝑧ሺ𝑡ሻ, 𝑡 െ 𝑣 𝑧, 𝑡 ଶ ൌ 𝐸ఢ,୸,୲ሾ 𝑣ఏ 𝑧ሺ𝑡ሻ, 𝑡 െ 𝑧 െ 𝜖 ଶሿ

Inference
Sample 𝜖~𝒩 𝑂, 𝐼
Solve the IVP ௗ௭

ௗ௧
ൌ 𝑣ఏ 𝑧ሺ𝑡ሻ, 𝑡 ,  𝑧 0 ൌ 𝜖 to obtain a sample from the target distribution 𝑝ଵ



ENMA: Tokenwise Autoregression for Generative Neural PDE Operators (Kassai et al. 2025)
Discrete vs continuous token distribution forecasting
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 Consider a frame with 𝑀 tokens 𝑍 ൌ 𝑧ଵ, … , 𝑧ெ

Next token prediction 𝑝 𝑧ଵ, … , 𝑧ெ ൌ ∑ 𝑝ሺ𝑧௜|𝑧ழ௜ሻெ
௜ୀଵ

How 𝑝 𝑧௜ 𝑧ழ௜ is modeled:
• Compute a context 𝑐௜ ൌ 𝑓ሺ𝑧ଵ, … , 𝑧௜ሻ, e.g. with a transformer

• Model next token probability 𝑝ሺ𝑧௜|𝑐௜ሻ

Discrete case
𝑧௜ ∈ ሼ1, … ,𝐾ሽ

• 𝑝 𝑧௜ ൌ 𝑘 𝑐௜ ൌ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ሺ𝑙𝑜𝑔𝑖𝑡ሺ𝑐௜ , 𝑘ሻሻ
• 𝑙𝑜𝑔𝑖𝑡ሺ𝑐௜ , 𝑘ሻ is the logit corresponding to 

class 𝑘

Continuous case
𝑧௜ ∈ 𝑅ௗ

Sample 𝜖~𝒩 𝑂, 𝐼
Solve ௗ௭ሺ௧ሻ

ௗ௧
ൌ 𝑣ఏ 𝑧 𝑡 , 𝑡, 𝑐௜  , 𝑧 0 ൌ 𝜖 to get

a sample 𝑧௜



ENMA: Tokenwise Autoregression for Generative Neural PDE Operators (Kassai et al. 2025)
From Autoregression to to masked autoregression (Li et al. 2024 - https://arxiv.org/abs/2406.11838)
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MLP
Flow Matching

𝑐

𝜖 𝑧ହ

MLP
Flow Matching

𝑐

𝜖 𝑧ହ, 𝑧ଵଶ, 𝑧ଵସ

Left-right 
autoregressive

Masked autoregressive



ENMA: Tokenwise Autoregression for Generative Neural PDE Operators (Kassai et al. 2025)
General structure
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

Continuous encoder Continuous decoder
Generative contiunous

transformer



ENMA: Tokenwise Autoregression for Generative Neural PDE Operators (Kassai et al. 2025)
General structure
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Historical context
𝐿 frames

Fixed size latent representation
of the spatio temporal context



ENMA: Tokenwise Autoregression for Generative Neural PDE Operators (Kassai et al. 2025)
Generative component
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Masked autoregressive
generation



ENMA: Tokenwise Autoregression for Generative Neural PDE Operators (Kassai et al. 2025)
Generative component
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

Stochastic component
Flow matching

Deterministic component
Masked AR spatial 

transformer



ENMA: Tokenwise Autoregression for Generative Neural PDE Operators (Kassai et al. 2025)
Generative component - iterations
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



ENMA: Tokenwise Autoregression for Generative Neural PDE Operators (Kassai et al. 2025)
Evaluation
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 In and out distribution performance  



ENMA: Tokenwise Autoregression for Generative Neural PDE Operators (Kassai et al. 2025)
Evaluation
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

ENMA requires only a small number of autoregressive steps (Left) and flow 
matching steps (right)

(Combined equation)



ENMA: Tokenwise Autoregression for Generative Neural PDE Operators (Kassai et al. 2025)
Uncertainty quantification
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 Generate multiple trajectories and compute statistics

RMSCE over time

CRPS over time



ENMA: Tokenwise Autoregression for Generative Neural PDE Operators (Kassai et al. 2025)
Examples: Gray Scott
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In-distribution Out-of-distribution



ENMA: Tokenwise Autoregression for Generative Neural PDE Operators (Kassai et al. 2025)
Examples: vorticity
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In-distribution Out-of-distribution



Whats next: foundation models
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



Whats next: foundation models
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 Poseidon, Herde et al 2024

MPP, McCabe et al 2024

DISCO, Morel et al 2024

Subramanian et al 2024



Summing up
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 NN generalization for physics
 Critical problem: deserves specific approaches
 Proposed approach: adaptive conditioning

 pro: improves over ERM/ Fine tuning
 cons: reality gap still to explore

 Extends to other situations, e.g. multiple physics, multi fidelity,  in-context continuous distributions, 
etc
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ThankYou


