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 Context:
 AI4science

 Background
 Neural networks and ordinary differential equations

 NNs as surrogate models for solving PDEs and modeling Spatio-
temporal dynamics
 Focus: data-driven approaches

 Discrete space models – 3 examples
 ResNets, Graph Neural Networks, Transformers

 Neural operators & Continuous space models– 3 examples
 Frequential representations
 Implicit Neural Representation
 Attention mechanisms + Transformers



Context: AI4Science



AI4Science as a new scientific paradigm
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• Paradigm shift: from explicit formulation to implicit knowledge discovery
• Emerged in 2018 – rapidly growing field

• Involves many scientific communities

AI4Science paradigm changes
How research is done: From hypothesis generation to data analysis, 
experimentation, and discovery.
The questions we can ask: Enabling exploration of complexity and 
scale previously impossible.
The pace of discovery: Accelerating insights in fields like drug 
discovery, material science, climate modeling, and fundamental physics.



Context - AI for Science - AI as digital twins
Weather forecasting
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2022-2024 – Foundation Models for weather 
prediction (ERA5 dataset 40 years hourly 

reanalysis data)

GraphCast – Google & DeepMind 2022
https://arxiv.org/abs/2212.12794

ClimaX – Msoft & UCLA 2023
https://arxiv.org/abs/2301.10343

Pangu-Weather – Huawei 2023
http://arxiv.org/abs/2211.02556

FourCastNet – NVIDIA&Lawrence Berkeley 
lab.&al. 2022

http://arxiv.org/abs/2202.11214
Neural General Circulation Model –
Google 2023

https://arxiv.org/abs/2311.07222
Aurora – Microsoft 2024

https://arxiv.org/abs/2405.13063

Aurora (Bodnar et al. 2024)

• Integrated Forcasting System 
Numerical simulation (ECMWF): 
65 minutes on 352 high-end CPU 
for a 10-day forecast 

• Aurora:
• Inference: less than 1 mn on 

one A100 GPU roughly a 
×5,000 speedup over IFS

• Pre-training, 2.5 weeks on 32 
A100



Context - AI for Science – Biology & Drug design
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 Alphafold: Tertiary protein
structure prediction
 (2018) - Several modules 

trained separately
 (2020) - Evoformer, end-to-end 

training
 (2024) - Pairformer Structure 

of protein with DNA, RNA, 
ligands

 Alphafold server

 Drug design: Speed up the 
drug discovery process
 Designing molecules/ 

compounds with high binding 
affinity to given pathogenic
protein targets

 Inhibitor compounds against
tubercolosis

Fig - Google DeepMind 
Predicted enzyme 
structure (blue) and 

experimental structure 
(gray)
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Fig. Wu et al. 2025



Context - AI for Science AI as a reasoning engine -
AI4Math - Example MATH Benchmark
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 Dataset
 12.5K problems from high 

school competitions + large 
pretraining dataset

 Models: LLMs

Performances
 2021

 2025 vals.ai/benchmarks

(Hendriycks et al. 2021)

(Yang et al. 2024)



Neural networks and ordinary
differential equations

NNs as numerical schemes for solving ODEs



NNs as numerical schemes for solving ODEs
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 Several NNs use skip 
connections, e.g. ResNet

Input 𝑥 is progressively modified by 
a residual 𝑓 𝑥,𝜃

 ODE for initial value problem

  ௗ௫
ௗ௧
ൌ 𝑓ሺ𝑥 𝑡 ;𝜃 𝑡 ሻ for 𝑡 ∈ ሾ0,𝑇ሿ, 

𝑥 0 ൌ 𝑥଴
 What is the value of 𝑥 𝑇 ? 

 Equivalent integral formulation

 𝑥 𝑇 ൌ 𝑥 0 ൅ ׬ 𝑓 𝑡, 𝑥 𝑡 𝑑𝑡்
ை

 ׬ 𝑓 𝑡, 𝑥 𝑡 𝑑𝑡்
ை is approximated

via numerical integration
 Exemple: Euler numerical scheme

 𝑥௧ାଵ ൌ 𝑥௧ ൅ ℎ𝑓 𝑥௧ ,𝜃௧ , 𝑥 0 ൌ 𝑥଴

Forward pass of ResNet is similar to Euler scheme for solving IVP 
(E 2017, Haber 2017, Chang 2018, Lu 2018, …)

𝑥௧ାଵ ൌ 𝑥௧ ൅ 𝑓ሺ𝑥௧, 𝜃௧ሻ𝑥௧

Resnet Module



NNs as numerical schemes for solving ODEs – Learning problem
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 Learning problem with ResNets
 𝑀𝑖𝑛ఏ    𝐿 𝐹 𝑥,𝜃 ,𝑦

𝑠. 𝑡.     𝑥୪ ൌ x୪ିଵ ൅ 𝑓௟ሺ𝑥୪ିଵሻ , 𝑙 ൌ 1 …𝑇, x଴ ൌ x

 𝑥 input, 𝑦 target, 𝜃 parameters, 𝑥௟ layer 𝑙 activation, 𝑇 layers
 Solving this problem requires alternating

 Forward pass – Euler numerical scheme for solving


ௗ௫
ௗ௧
ൌ 𝑓ሺ𝑥 𝑡 , 𝜃 𝑡 ሻ for 𝑡 ∈ ሾ0,𝑇ሿ, 𝑥 0 ൌ 𝑥଴

 Backward pass – differentiation through Euler scheme for solving


ௗఏ
ௗ௧
ൌ െ𝜖 డ௅ ఏ ௧  

డఏ , 𝜃 0 ൌ 𝜃଴ &(gradient flow)

 Could this idea be generalized?
 Replace Euler with any numerical integration scheme, explicit or implicit

The constraint describes the 
Forward computation graph of 
the Resnet
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NNs as numerical schemes for solving ODEs - Continuous limit

 Continuous limit
 If we let ℎ → 0 in Euler, the ResNet learning problem becomes
 𝑀𝑖𝑛ఏ𝐿 𝐹 𝑥,𝜃 ,𝑦

 𝑠. 𝑡.     డ௫
డ௧
ൌ 𝐹 𝑥 𝑡 ,𝜃 𝑡 , 𝑡 ∈ ሾ0,𝑇ሿ , 𝑥଴ ൌ 𝑥

 Two different families of methods for solving the learning problem:
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Fig. NeuralODE, Chen et al. 2018

Discretize then Optimize
(DTO)

• Discretize in time and 
then solve

• Framework used in 
this presentation

Optimize then Discretize
(OTD)

• Solves the continuous
optimization problem
via adjoint method

• Popularized by 
NeuralODE (Chen et 
al. 2018)



NNs as numerical schemes for solving ODEs - summary
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 The dynamics of Neural Networks – explained by ODEs
 NNs with an infinite number of layers can be modeled as ordinary

differential equations (ODE)
 Inference and training can be formulated as solving ODEs

 In practice
 This helped popularize the use of differentiable numerical solvers in the ML 

community
 They are now implemented in deep learning libraries, e.g. PyTorch
 Makes possible the integration of numerical solvers and deep learning

components in hybrid systems
 Key for modeling neural solvers



Modeling Spatio-temporal dynamics 
with Neural Networks

NNs as surrogate models for solving PDEs – Discrete space models
NNs as surrogate models for solving PDEs – Continuous space models

& Neural operators



Modeling Spatio-temporal dynamics with Neural Networks
Motivations
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 Applications domains - examples

 Objectives
 Alternative to numerical solvers

 Reduce computational cost – e.g. CFD Surrogate Models/ Reduced Order
Models

 Complement physical models: Hybrid Systems
 Replace solvers

Computational Fluid Dynamics Earth System Science –
Weather prediction/ Climate

Graphical design

Tompson et al. 2017 

DrivaerNet 2025

ECMWF 2025



Modeling Spatio-temporal dynamics with Neural Networks
Frameworks
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Deep learning landscape for modeling dynamics and solving PDEs
Focus of the presentation: data-driven approaches

Present PINNs of physics augmented 

Neural 
Surrogates

Hybrid 
modeling

Neural solvers

Amount of data

Physics 
prior

PINNs (Raissi et al. 2017)

APHINITY (Yin et al. 2020)

Solver-in-the-loop (Um et al. 
2020)

Neural Operators

GraphCast, Aurora, etc.

Learned solver (Kochkov et al. 
2021) F

O
C
U
S



Modeling Spatio-temporal dynamics
with Neural Networks

 NNs as surrogate models for solving PDEs – Discrete space models
NNs as surrogate models for solving PDEs – Neural operators & 

Continuous space models



NNs as surrogate models for solving PDEs
Discrete space models
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 Space discretization is performed a priori under the form of:
 a regular grid
 irregular meshes, e.g. in fluid mechanics

 Classical NN models s.a. CNNs, UNets, Graph NNs, Transformers 
can then be used as time steppers on these discretized
representations

 This principle is similar to the method of lines for solving PDEs
 Perform spatial discretization + algebraic approximation of spatial 

derivatives
 Solving the PDE amounts at solving a system of ODEs that can be solved

with a numerical ODE solver



NNs as surrogate models for solving PDEs
Discrete space models

 Learning from partial observations – ResNets െ൐ regular grids

Message passing PDE solvers – Graph NNs െ൐ irregular meshes

Transformers െ > regular or irregular meshes

2025/06/16ML for Physical Dynamics, an introduction - P. 
Gallinari
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NN surrogates – discrete space models – regular grids
Learning from partial observations (Ayed et al. 2019- 2022)
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 Forecasting non linear dynamical systems from observations only
 Assumption: partial observations

 The state of the system is only partially observed

 Objective
 Learn the evolution of the system (observations and state) from scratch 

with a NN



NN surrogates – discrete space models – regular grids
Learning from partial observations (Ayed et al. 2019- 2022)

 Assume an (unknown) underlying dynamical system with initial 
conditions



𝑋଴                  Initial state of the system 
ௗ௑೟
ௗ௧

ൌ 𝐹∗ 𝑋௧                    State dynamics
𝑌௧ ൌ 𝐻 𝑋௧                           Observations

 Variables
 𝑋௧ ∈ 𝑅ௗ : state of the system at time 𝑡

 function of time and space, partially observed
 e.g. 3 D dynamics of the Ocean: velocity, pressure on the ocean surface

 𝑌௧ : observation, i.e. only available data for training ሼ𝑌௧, 0 ൑ 𝑡 ൑ 𝑇ሽ
 e.g. satellite observations: temperature, salinity, ocean color, waves height, …

 𝐻: measurement process linking state to observation is known
 𝐹∗describes the evolution of the state and is unknown

ML for Physical Dynamics, an introduction - P. Gallinari 2025/06/1620



NN surrogates – discrete space models – regular grids
Learning from partial observations (Ayed et al. 2019- 2022)
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 Objective
 Learn the evolution of the system (observations and state) from scratch 

with a NN
 Learning problem

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
 ிഇ, ௚ഇ

 𝐸௒ሾ∑ 𝑌௧ െ 𝐻 𝑋෠௧ ଶ
ଶ்

௧ୀ଴ learn trajectories from observations

 Subject to ∀𝑡, ௗ௑
෠೟
ௗ௧

ൌ 𝐹ఏ 𝑋෠௧ , learn the state dynamics

 𝑋෠଴ ൌ 𝑔ఏሺ𝑌 ௞ , 0 ൏ 𝑘 ൑ 𝐾ሻ learn initial state from previous
observations

 Implementation
 Evolution function 𝐹ఏ is implemented as a convolutional ResNet, similar to 

forward Euler solver for ODEs

 Solve ௗ௑
෠೟
ௗ௧

ൌ 𝐹ఏ 𝑋෠௧
  𝑋௧ାఋ௧

ఏ ൌ 𝑋௧ఏ ൅ 𝛿𝑡𝐹ఏሺ𝑋௧ఏሻ
 𝑔ఏ is a Unet or a ResNet



NN surrogates – discrete space models – regular grids
Learning from partial observations (Ayed et al. 2019- 2022)
Examples
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 NEMO – Nucleus for European Modelling of the Ocean Engine
 State: 7 variables, we make use only of 2 variables corresponding to the 

velocity field
 Observations: Sea Surface Temperature
 Initial state: interpolated from previous observations

Targets (𝑌௧)

Targets (𝑋௧)

Predictions (𝑌෠௧)

Predictions (𝑋෠௧)

Conv-LSTM



NN surrogates – discrete space models – regular grids
Learning from partial observations (Ayed et al. 2019- 2022)
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 Summary
 Modeling a state space system with NNs
 The evolution function is learned in the unobserved state space
 Better than working directly in the observation space



NNs as surrogate models for solving PDEs
Discrete space models

Learning from partial observations – ResNets – Unets െ൐ regular grids
 Message passing PDE solvers – Graph NNs െ൐ irregular meshes

Transformers െ > regular or irregular meshes

2025/06/16ML for Physical Dynamics, an introduction - P. 
Gallinari

24



NN surrogates – discrete space models – irregular meshes
Graph Neural Networks
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 GNNs are well adapted to handle irregular meshes
 Mesh nodes are mapped to a graph which is processed with a GNN

 The GNN acts as a time stepper Neural ODE solver

 Several efforts for developing neural PDE solvers based on graphs
 Sanchez-Gonzales et al. 2020, Belbute-Peres et al. 2020, Pfaff et al. 2021, …
 Large scale implementation: Graphcast (Google 2022)

 Example: Brandstetter et al. 2022 - Message Passing Neural PDE 
Solvers
 Objective: forecast spatio-temporal dynamics

 Auto-regressive model 𝑢 𝑥, 𝑡 → 𝑢 𝑥, 𝑡 ൅ Δ𝑡 → 𝑢 𝑥, 𝑡 ൅ 2Δ𝑡 …
 Representative GNN solver 
 Handle multiple situations
 Multiple resolutions, boundary problems, parametric PDEs, etc



NN surrogates – discrete space models – irregular meshes
Message Passing Neural PDE Solvers (Brandstetter et al. 2022)
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 Framework: Encode-Process-Decode (Sanchez-Gonzales 2020)
 Process: message passing on the graph node embeddings

Fig. Bransdtetter et al. 2022

Node 𝒊, step 𝒌
Encoding

Input: last 𝐾 values at each node 𝑖
𝑓௜଴ ൌEncode(𝑢௜௞ି௄ , … ,𝑢௜௞)

Process in latent space

M message passing steps
𝑓௜௠,𝑚 ൌ 1 …𝑀

Decode

Output: next 𝐾 values
𝑢௜௞ାଵ, … ,𝑢௜௞ା௄



NN surrogates – discrete space models – irregular meshes
Message Passing Neural PDE Solvers (Brandstetter et al. 2022)
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 Example

 Burgers equation 1𝐷: డ௨ ௧,௫
డ௧

ൌ െu డ௨ ௧,௫
డ௫

൅ 𝑣 డమ௨ ௧,௫
డ௫మ

൅ 𝑓ሺ𝑡, 𝑥ሻ
 simplified equation for fluid flows, 𝑢 velocity field, 𝑣 viscosity coef.

Fig. Branstetter 2022

Experiments performed at different resolutions
Color = time



NNs as surrogate models for solving PDEs
Discrete space models

Learning from partial observations – ResNets – Unets െ൐ regular grids
Message passing PDE solvers – Graph NNs െ൐ irregular meshes

 Transformers െ > regular or irregular meshes

2025/06/16ML for Physical Dynamics, an introduction - P. 
Gallinari
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NN surrogates – discrete space models -Transformers
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 Why transformers for modeling dynamical systems?
 They allow us to leverage the recent developments in vision/ NLP for 

modeling complex dynamics
 They are the core components of recent neural solvers

 They operate on tokenized representations (vectors) of the input/ 
output data
 Either directly in the physical space
 Most often on a latent representation, leveraging an Encode-Process-

Decode framework
 Architectures are often inspired fromVision Transformers



NN surrogates – discrete space models –Transformers
Attention mechanisms
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S.A. captures contextual
representation of the inputs

Complexity 𝑂ሺ𝑁ଶሻ with 𝑁
the size of the input 

sequence

C.A. maps a sequence of 
vector (𝒀) of variable size
𝑁 into a sequence of 

vector (𝒁’) of fixed size 𝑀

2 core attention mechanisms used in transformers

Self Attention

Cross Attention



NN surrogates – discrete space models –Transformers
Vision transformers (Dosovitskiy et al. 2021)
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Fig. Dosovitskiy et al. 2021 

ViT
• Splits the image in patches

• Embeds them linearly and feed them to a transformer encoder
• Stacked encoders could be used for time stepping

Lots of transformer/ attention variants in order to
• Adapt to the physics/ Limit the complexity

• Implement the encode/process/decode process
• Examples follow



NN surrogates – discrete space models –Transformers
BCAT model (Liu et al. 2025)
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 Simple autoregressive transformer (decoder as in GPT/ Llama) for 
spatio-temporal prediction (sequential)

Patchify & flatten frames

MLP encoder: Sequence of tokens/ 
frames

MLP decoder: back to physical
space

Process: Causal GPT like decoder: 
predicts next frame token
sequence



NN surrogates – discrete space models –Transformers
Transformers - BCAT model (Liu et al. 2025)
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 Simple autoregressive transformer for spatio-temporal prediction



NN surrogates – discrete space models –Transformers
Transolver (Wu et al. 2024)
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 Regular patches do not capture the underlying physics

 Objective: learn « physical » tokens and decrease attention complexity
 Physical tokens

 Decompose automatically the mesh into domains where points share similar
physical states

 Encode each slice (domain) into a « physical » token

 Decrease attention complexity
 Apply attention on these physical tokens instead of regular patches or mesh points 

 Operates on point clouds, meshes, regular grids

Slices for car surface 
pressure, 3D mesh



NN surrogates – discrete space models –Transformers
Transolver (Wu et al. 2024)
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Initial state, N 
mesh points

M Slices M Tokens Attention 
on tokens

Back to mesh
space Deslice



Modeling Spatio-temporal dynamics
with Neural Networks

NNs as surrogate models for solving PDEs – Discrete space models
 NNs as surrogate models for solving PDEs – Continuous space models



NN surrogates – Operators
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 Instead of learning maps between vector spaces (functions), learn
maps between function spaces (operators)
 Images for example are considered as continuous functions
 The objective is then to learn the operator mapping an input image to an 

output one

 Objectives
 Handle irregular and diverse geometries (inputs): meshes, point sets, 

grids
 Query at any space-time coordinate in the output space

 Examples: 3 families of methods
 Frequential representations - Neural Fourier operators (2020)
 Implicit Neural Representation - CORAL (2023)
 Attention mechanisms + Transformers - AROMA (2024)



NNs as surrogate models for solving PDEs –
Continuous space models

 Fourier Neural Operators
CORAL:COordinate-based model for opeRAtor Learning
AROMA: Attentive Reduced Order Model with Attention

2025/06/16ML for Physical Dynamics, an introduction - P. 
Gallinari
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NNs as surrogate models for solving PDEs – Operators
Fourier Neural Operator (Li et al. 2021)                                                        
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 We consider

 𝒱 ൌ 𝒱 Ω ⊂ 𝑅ௗ;𝑅௡ ,𝒰 ൌ 𝑈ሺΩᇱ ⊂ 𝑅ௗᇲ; R୫ሻ two function spaces

 𝒢:𝒱 → 𝒰 a non linear unknown mapping between the two function
spaces
 FNO considers mappings 𝒢 that correspond to the solution operator of a 

parametric PDE 

 Objective
 Learn 𝒢ఏ an approximation of 𝒢 from a finite set of samples
 Samples are provided as p-points discretization of functions 𝑣 ∈ 𝒱 and 

u ∈ 𝒰
 i.e. in practice we learn from discrete spaces, the representation of the 

continuous functions 𝑣 ∈ 𝒱 and 𝑢 ∈ 𝒰



NNs as surrogate models for solving PDEs – Operators
Fourier Neural Operator (Li et al. 2021) 
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 Classical neural network

𝑢 ൌ ሺ𝐾்∘ 𝜎் ∘ ⋯ ∘ 𝜎௧ ∘ 𝐾௧∘ ⋯ ∘ 𝜎ଵ∘ 𝐾଴ሻ𝑣 

 With 𝐾௧ a linear operator, 𝜎௧ a non linearity, 𝑢, 𝑣 vectors

 Neural operators (simplified)
 Follow a similar framework but 𝑢 and 𝑣 are no more vectors but 

functions

𝑣௧ାଵ 𝑥 ൌ 𝜎௧ାଵ 𝐾௧ 𝑣௧ 𝑥  

 With 𝐾௧ 𝑣௧ an integral operator

𝐾௧ 𝑣௧ 𝑥 ൌ න 𝜘௧ 𝑥,𝑦 𝑣௧ 𝑦 𝑑𝑦
ஐ

 𝜘௧ 𝑥,𝑦 is a kernel function
 𝑣௧:Ω → 𝑅௡, 𝑣௧ାଵ:Ω → 𝑅௠, Ω ⊂ 𝑅ௗ a bounded space



NNs as surrogate models for solving PDEs – Operators
Fourier Neural Operator (Li et al. 2021) 

2025/06/16ML for Physical Dynamics, an introduction - P. Gallinari41

 How to learn the kernel function 𝜘௧?
 Let us consider the simplified update rule

𝑢 𝑥 ൌ 𝐾ሺ𝑣ሻሺ𝑥ሻ  ൌ න 𝜘 𝑥,𝑦 𝑣 𝑦 𝑑𝑦
ஐ

 with 𝑣,𝑢:Ω → 𝑅௡

 FNO works in Fourier space
 𝜘 𝑥,𝑦 ൌ 𝜘 𝑥 െ 𝑦 is a convolution operator

𝑢 𝑥 ൌ 𝜘 ∗ 𝑣ᇱ 𝑥
 Convolution theorem:

𝑢 𝑥 ൌ ℱିଵሺℱ 𝜘 .ℱ 𝑣ᇱሻ 𝑥

 Convolution in space is equivalent to pointwise multiplication in Fourier 
domain

 ℱ 𝜘 is a linear transformation



NNs as surrogate models for solving PDEs – Operators
Fourier Neural Operator (Li et al. 2021) 
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 Fourier transform – Linear Transform – Inverse Fourier 

𝑢 𝑥 ൌ ℱିଵሺℱ 𝜘 .ℱ 𝑣ᇱሻ 𝑥

𝑅 is a linear operator – implemented as a tensor
ℱ is implemented via a Fast Fourier Transform (complexity 𝑛𝑙𝑜𝑔𝑛, 𝑛 nb of 
spatial points)

• Operates on regular grids
• FFT is independent of the grid size

• Could be used on resolutions different from the training ones

Fig Li et al. 2021

FNO model



NNs as surrogate models for solving PDEs – Continuous space models
Fourier Neural Operator (Li et al. 2021)
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 Example: zero shot super-resolution
 2 D Navier Stokes, vorticity form, viscuous incompressible fluid


డ
డ௧
𝑤 𝑥, 𝑡 ൅ 𝑢 𝑥, 𝑡 .𝛻𝑤 𝑥, 𝑡 ൌ 𝜈Δ𝑤 𝑥, 𝑡 ൅ 𝑓 𝑥 , 𝑥 ∈ 0,1 ଶ, 𝑡 ∈ ሺ𝑂,𝑇ሿ

 ∇.𝑢 𝑥, 𝑡 ൌ 0, 𝑥 ∈ 0,1 ଶ, 𝑡 ∈ 0,𝑇
 𝑢 𝑥, 𝑡   velocity field, 𝑤 𝑥, 𝑡 vorticity, characterizes local rotation of the 

fluid

 Fig. Illustrates super-resolution: trained at 64x64, test on 256x256

Fig Li et al. 2021



NNs as surrogate models for solving PDEs –
Continuous space models

Fourier Neural Operators
 CORAL:COordinate-based model for opeRAtor Learning

AROMA: Attentive Reduced Order Model with Attention
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NNs as surrogate models for solving PDEs – Operators
Neural Fields (Implicit Neural Representations)
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 Coordinate-based approximation of functions
 Continuous representations of objects as coordinate-dependent functions
 Appeared initially as a novel way to represent 3D shapes in place of discrete

representations
 Example: signed distance

 The shape is fully described by the NN parameters
 Mesh-free approach – independent of the resolution: learn from point sets

 References: Sitzmann et al. 2020, Fathony et al., 2021, Tancik et al. 2020, etc

Fig. Park et al. 2019
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NNs as surrogate models for solving PDEs – Operators
Neural Fields (Implicit Neural Representations)
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 Learning several images
 A neural field model represents one image
 How to represent multiple images using a single model?

 Condition the neural field on a compact code specific of an image

 This code 𝑧௜ could be learned e.g. through auto decoding by gradient descent and 
is specific to an image

 Conditioning is performed through e.g. a hypernetwork that adapts some
networks parameters to each image

 Network weights (in blue) are  shared across images

𝒙
 

 𝒚

Φሺ𝑥, 𝑦; 𝑧௜ሻ

Code 𝑧௜



NNs as surrogate models for solving PDEs – Operators
CORAL : Operator Learning with Neural Fields (Serrano et al. 2023)
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 Tasks: learn mappings between input – output functions

2025/06/16

Direct forecasting
(IVP)

𝑢଴ → 𝑢்

Dynamics modeling
𝑢௧ → 𝑢௧ାଵ

Geometry aware
inference

 𝑎௚௘௢ → 𝑢௦௢௟



NNs as surrogate models for solving PDEs – Operators
CORAL : Operator Learning with Neural Fields - (Serrano et al. 2023) 
Inference
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Encode-Process-Decode framework

DecodeEncode

Process

Input Output

2025/06/16



NNs as surrogate models for solving PDEs – Operators
CORAL : Operator Learning with Neural Fields - (Serrano et al. 2023) 
Inference
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

DecodeEncode

Input Output

Neural Field + 
Hyper-network

Neural Field + 
Hyper-network

Differentiable ODE solver
2025/06/16

DecodeEncode

Process



NNs as surrogate models for solving PDEs – Operators
CORAL : Operator Learning with Neural Fields (Serrano et al. 2023) -
Inference
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Geometry aware inference: 
NACA-Euler (Mach number)

Forecasting on Shallow-Water 
(vorticity)

Robustness to changes of grid
and time extrapolation



NNs as surrogate models for solving PDEs –
Continuous space models

Fourier Neural Operators
CORAL:COordinate-based model for opeRAtor Learning

 AROMA: Attentive Reduced Order Model with Attention
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NNs as surrogate models for solving PDEs – Operators
AROMA: Attentive Reduced Order Model with Attention (Serrano et al. 
2024)
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 Principled Framework:
 Properties

 Handle diverse geometries: inputs and outputs may consist in point sets, grids, 
irregular meshes

 Captures local spatial information
 Can be queried at any spatial position

 Demonstrates how modern NN components allow building versatile 
PDE solvers
 Encode/ Process/ Decode framework
 Encoding: cross-attention maps variable-size inputs to a fixed-size compact 

latent token space encoding local spatial information
 Processing: a diffusion transformer architecture to model dynamics and 

exploit spatial relations locally and globally via self-attention + model 
uncertainty

 Decoding: uses a conditional neural field + cross-attention to query 
forecast values at any spatial point within the equation's domain



NNs as surrogate models for solving PDEs – Operators
AROMA: Attentive Reduced Order Model with Attention (Serrano et al. 
2024) - General framework
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Cross-attention encoder: 𝑢௧ → 𝑍௧

• Encodes variable size discretized input 𝑢ሺሻ into a fixed size & small
dimensional sequence of latent embedding tokens 𝑍

• 𝑍 encodes local spatial information on problem geometry + variable 
values

Cross-attention

Encoder module



NNs as surrogate models for solving PDEs – Operators
AROMA: Attentive Reduced Order Model with Attention (Serrano et al. 
2024) - Cross-attention encoder captures spatial attention
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 Cylinder flow ground truth

 Tokens encode local spatial 
information – cross attention 
between 𝑇௚௘௢ tokens and "𝑥"

Example: Cross attention on cylinder flow



NNs as surrogate models for solving PDEs – Operators
AROMA: Attentive Reduced Order Model with Attention Attention
(Serrano et al. 2024) -General framework
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Time stepping transformer: 𝑍௧ → 𝑍௧ା୼௧

• Learns the dynamics in the small dimensional latent space
• Self attention models relations between spatial latent tokens
• Inference: dynamics is enrolled in the latent space starting from an 

initial condition– low complexity
• Diffusion: introduces a stochastic component

Self-attention

Processor



NNs as surrogate models for solving PDEs – Operators
AROMA: Attentive Reduced Order Model with Attention Attention
(Serrano et al. 2024)-General framework
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Cross-attention neural fields decoder: 𝑍௧ା୼௧ → 𝑢௧ା୼௧

• Maps the latent representation 𝑍௧ା୼௧ to the original physical space
• Can be queried at any position 𝑥 of the physical space

Cross-attention

Decoder module



NNs as surrogate models for solving PDEs – Operators
AROMA: Attentive Reduced Order Model with Attention - (Serrano 
et al. 2024)Cross-attention encoder captures spatial attention
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 Burgers equation ground
truth

 Tokens encode local spatial 
information

Token 0 Token 1

Token 2 Token 3

Example: Burgers equation – perturbation analysis on the tokens



Conclusion
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 Survey of main current data-driven methods for modeling physical
dynamics
 Benefits from advances in different ML fields (Vision, NLP, …)
 Large size applications deployed in some domains e.g. weather forecast
 Gap to real world applications in many domains e.g. CFD

 Takeaways
 Scaling is a central problem
 Latent models are probably the correct way to proceed
 Importance of efficient and reliable « physical » encodings / decoding

operating on multiple geometries
 Design of scalable neural operators
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 Thanks for your attention
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