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Outline

» Context:

» Al4science

» Background

» Neural networks and ordinary differential equations

» NNs as surrogate models for solving PDEs and modeling Spatio-
temporal dynamics

» Focus: data-driven approaches
Discrete space models — 3 examples
O ResNets, Graph Neural Networks, Transformers
Neural operators & Continuous space models— 3 examples
O Frequential representations
O Implicit Neural Representation

O Attention mechanisms + Transformers
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Context: Al4Science




Al4Science as a new scientific paradigm

« Paradigm shift: from explicit formulation to implicit knowledge discovery
* Emerged in 2018 — rapidly growing field
* Involves many scientific communities

Al4Science paradigm changes
How research is done: From hypothesis generation to data analysis,
experimentation, and discovery.

The questions we can ask: Enabling exploration of complexity and
scale previously impossible.

The pace of discovery: Accelerating insights in fields like drug
discovery, material science, climate modeling, and fundamental physics.
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Context - Al for Science - Al as digital twins

Weather forecasting

2022-2024 - Foundation Models for weather
prediction (ERAS5 dataset 40 years hourly
reanalysis data)

GraphCast - Google & DeepMind 2022
https://arxiv.org/abs/2212.12794

ClimaX - Msoft & UCLA 2023
https://arxiv.org/abs/2301.10343

Pangu-Weather — Huawei 2023
http://arxiv.org/abs/2211.02556

FourCastNet — nviDiA&Lawrence Berkeley
lab.&al. 2022
http://arxiv.org/abs/2202.11214

Neural General Circulation Model —
Google 2023
https://arxiv.org/abs/2311.07222

Aurora — Microsoft 2024
https://arxiv.org/abs/2405.13063
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Context - Al for Science — Biology & Drug design

ﬁAlphafold:Tertiary protein\ >@g design: Speed up the \

structure prediction drug discovery process
» (2018) - Several modules » Designing molecules/
trained separately compounds with high binding
» (2020) - Evoformer, end-to-end affinity to given pathogenic
training protein targets
» (2024) - Pairformer Structure > Inhibitor compounds against
of protein with DNA, RNA, tubercolcy Generated
. : ; compound
ligands ; oo ——CoMpoind____
» Alphafold server Protein
Fig - Google DeepMind \
Predicted enzyme e
structure (blue) and = » Binding sites
experimental structure e 3

] (gray)
K Fig. Wu et al. 2025/
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Context - Al for Science Al as a reasoning engine -

Al4Math - Example MATH Benchmark
Performances

» 2021 (Hendriycks et al. 2021)

» Dataset
» 12.5K problems from high

SC h O O I CO m Petiti O n S + Ia r'ge Model Prealgebra Algebra Number Counting & Geometry Intermediate Precalculuy Average
Theory Probability Algebra
GPT-20.1B 5.2 RA 50 28 ) 6.5 03 54+
P retrai n i ng datas et GPT-20.3B 6.7 6.6 Fijes) 38 6.9 6.0 7.1 6.2
GPT-20.7B 6.9 6.1 33 5.1 8.2 5.8 1.7 6.4 10
p =it A GPT-2 1.5B 8.3 6.2 48 54 8.7 6.1 8.8 6.9 +28
roblem: The equation 2 + 2z = i has two GPT-313B* 41 23 33 43 (K 32 70 3.0
::‘::1]11;::”\\“11unnnx. Determine the product of their GPT-3 13B 6.8 53 55 41 71 17 58 5.6 +4
Solution: Complete the square by adding 1 to GPT=3 1758 17 L 44 4.1 S 44 it 32 -4
each side. Then (z +1)? =1+i=eT V2. 50 Table 2: MATH accuracies across subjects. **" indicates that the model is a few-sho{ model. Thg
z+1=+e¥ \yj The desired product is then character ‘B denotes the number of parameters in billions. The gray text indicateq the relariy
(=1 +cos(Z \'f-j) (=1 —-cos(Z) \'/Tj) - ] improvement over the 0.1B baseline. :'-\Ii GPT-2 models pretrain on AMPS, and ¢ _l \_‘;llucs an
’ : = percentages. GPT-3 models do not pretrain on AMPS due to API limits. Model accuracy]is increasing
coad (%) VZi=1- U*-'-:[-II) V3= 1 —)\,*.2 ] very slowly, so much future research is needed. \ /

» Models: LLMs (Yang et al. 2024) » 2025  vals.ai/benchmarks

Math-related
web documents

Problems w/ step-
by-step solutions
Problems w/ tool-

integrated solutions Model (44) ¢ Accuracy v  (ostIn /Out C Latency (s) ¢
o & Gemini 2.5 ProExp * P 952% Pp1.25/%10.00 2683s
O . -

c AN " ol Nsa oLolye O G o3 P o4.6% $|L0.00 / $40.00 16.59 s

L,g\:«;%> o e e e e
o o o « © < Qwen3(2358) $ MDouex |$120/$120  142.75s

LLM pretrained Base math LLM Finetuned Tool-integrated
e/ end code et PR LEN 4 % Grok 3 Mini Fast High Reasoning Mou2% |$e0.60/ 100 22.77s

Figure 1: State-of-the-art math LLMs such as NuminaMath [49] typically undergo three stagks: mat —
retraining, finetuning on step-by-step solutions, and further finetuning on tool-integrated solutions 5 © odMni # Bouzx |s110/8440 1254
interleave natural language reasoning with Python tool invocation.
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Neural networks and ordinary
differential equations

NNs as numerical schemes for solving ODEs




NNs as numerical schemes for solving ODEs

» Several NNs use skip
connections eg ResNet

1 m [ i ko
3 " IT 11 EHE [ :<
g b i '1_L 7 ::I- R AT ~
R, Eijj‘w:: 5I? }‘.1w§.=1|
- ] ‘

m — |55}

Resnet Module

Xey1 = X + (X, 01)

conv,
3x3 conv, 128

Input x is progressively modified by
a residual f(x, 6)

» ODE for initial value problem

= = f(x(£); () for t € [0,T],
x(0) = x,
What is the value of x(T)?
» Equivalent integral formulation

» x(T) = x(0) + [ f (t,x())dt

T : :
» f, f (¢, x(t))dt is approximated
via numerical integration
» Exemple: Euler numerical scheme
Xey1 = X¢ + hf (xg, 0:),x(0) = x

Forward pass of ResNet is similar to Euler scheme for solving IVP
(E 2017, Haber 2017, Chang 2018, Lu 2018, ...)
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NNs as numerical schemes for solving ODEs — Learning problem

» Learning problem with ResNets
» Ming L(F(x,8),y)

s.t. x1=xX1_1+ filxj—1),l=1..T,xy = X «——The constraint describes the
Forward computation graph of

the Resnet

» X input,y target, 0 parameters, X; layer [ activation, T layers

» Solving this problem requires alternating

Forward pass — Euler numerical scheme for solving
0 2= f(x(£),0()) for t € [0,T],x(0) = x,
Backward pass — differentiation through Euler scheme for solving

Z_f — _Ew, 6(0) = 6, &(gradient flow)

» Could this idea be generalized?

» Replace Euler with any numerical integration scheme, explicit or implicit
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NNs as numerical schemes for solving ODEs - Continuous limit

» Continuous limit

» If we let h = 0 in Euler, the ResNet learning problem becomes

» | MingL(F(x,8),y)
dx

s.t. ——= F (x(t),@(t)),t €[0,T],x, =x

» Two different families of methods for solving the learning problem:

Discretize then Optimize | Residual Network - ODE Network | Qptimize then Discretize
(DTO) 4 \ 1= (OTD)
» Discretize in time and \ « Solves the continuous
then solve g £ optimization problem
« Framework used in "2 ! IS : via adjoint method
this presentation . 1\ | / « Popularized by
. . NeuralODE (Chen et

50 5 5 0 5
Input/Hidden/Output Input/Hidden/Output al. 201 8)

Fig. NeuralODE, Chen et al. 2018
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NNs as numerical schemes for solving ODEs - summary

» The dynamics of Neural Networks — explained by ODEs

» NNs with an infinite number of layers can be modeled as ordinary
differential equations (ODE)

» Inference and training can be formulated as solving ODEs

» In practice

This helped popularize the use of differentiable numerical solvers in the ML
community

They are now implemented in deep learning libraries, e.g. PyTorch

Makes possible the integration of numerical solvers and deep learning
components in hybrid systems

Key for modeling neural solvers
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Modeling Spatio-temporal dynamics
with Neural Networks

NNs as surrogate models for solving PDEs — Discrete space models
NNs as surrogate models for solving PDEs — Continuous space models
& Neural operators




Modeling Spatio-temporal dynamics with Neural Networks
Motivations

» Applications domains - examples

Computational Fluid Dynamics || Earth System Science — Graphical design

Weather prediction/ Climate

st
Experimental: Aurera ML model: 500 hPa
geopotential height and 850 hPa temperature

ECMWEF 2025 Tompson et al. 2017
» Objectives
» Alternative to numerical solvers

Reduce computational cost — e.g. CFD Surrogate Models/ Reduced Order
Models

Complement physical models: Hybrid Systems
Replace solvers
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Modeling Spatio-temporal dynamics with Neural Networks
Frameworks

Deep learning landscape for modeling dynamics and solving PDEs

Focus of the presentation: data-driven approaches

Physics
prior

A

PINNs (Raissi et al. 2017)
Neural solvers

APHINITY (Yin et al. 2020)

Hybrid Solver-in-the-loop (Um et al.
modeling 2020)

Learned solver (Kochkov et al.
2021)

Neural Operators Neural
GraphCast, Aurora, etc. Surrogates

>

Amount of data

nwCcNQOT
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Modeling Spatio-temporal dynamics
with Neural Networks

v/ NNs as surrogate models for solving PDEs — Discrete space models
NNs as surrogate models for solving PDEs — Neural operators &
Continuous space models




NNs as surrogate models for solving PDEs
Discrete space models

» Space discretization is performed a priori under the form of:
» a regular grid
» irregular meshes, e.g. in fluid mechanics

» Classical NN models s.a. CNNs, UNets, Graph NNs, Transformers
can then be used as time steppers on these discretized
representations

» This principle is similar to the method of lines for solving PDEs

» Perform spatial discretization + algebraic approximation of spatial
derivatives

» Solving the PDE amounts at solving a system of ODEs that can be solved
with a numerical ODE solver
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NNs as surrogate models for solving PDEs
Discrete space models

v Learning from partial observations — ResNets —> regular grids
Message passing PDE solvers — Graph NNs —> irregular meshes

Transformers — > regular or irregular meshes



NN surrogates — discrete space models — regular grids
Learning from partial observations (Ayed et al. 2019- 2022)

» Forecasting non linear dynamical systems from observations only
» Assumption: partial observations
The state of the system is only partially observed
» Objective

» Learn the evolution of the system (observations and state) from scratch
with a NN
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NN surrogates — discrete space models — regular grids
Learning from partial observations (Ayed et al. 2019- 2022)

» Assume an ( ) underlying dynamical system with initial
conditions
(X, Initial state of the system
> < % = F*(X;) State dynamics
Y = H(X;) Observations
» Variables

» X, € R%: state of the system at time t
function of time and space, partially observed

e.g. 3 D dynamics of the Ocean: velocity, pressure on the ocean surface

v

Y; : observation, i.e. only available data for training {Y;,0 < t < T}

e.g. satellite observations: temperature, salinity, ocean color, waves height, ...

v

H: measurement process linking state to observation is known

F*describes the evolution of the state and is unknown

v
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NN surrogates — discrete space models — regular grids
Learning from partial observations (Ayed et al. 2019- 2022)

» Objective
» Learn the evolution of the system (observations and state) from scratch
with a NN
» Learning problem

5 \[12
mi%n;éze Ey [Z{=0||Yt — H(Xt)”2 learn trajectories from observations

Subject to Vt,% = Fy ()?t), learn the state dynamics

Xo=90(Y_;,0 < k < K) learn initial state from previous
observations

» Implementation

» Evolution function Fy is implemented as a convolutional ResNet, similar to
forward Euler solver for ODEs
A% . (o
Solve E = Fg (Xt)
0
0 Xiroe = X{ + 8tFa(XP)

» gp is a Unet or a ResNet
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NN surrogates — discrete space models — regular grids
Learning from partial observations (Ayed et al. 2019- 2022)

Examples

» NEMO — Nucleus for European Modelling of the Ocean Engine

» State: 7 variables, we make use only of 2 variables corresponding to the
velocity field
» Observations: Sea Surface Temperature

» Initial state: interpolated from previous observations

Targets (Y;)
Targets (X;)

AV A
"H" Predictions (Y;)

A \ Predictions (X,)

Conv-LSTM

................................................................................
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NN surrogates — discrete space models — regular grids
Learning from partial observations (Ayed et al. 2019- 2022)

» Summary
» Modeling a state space system with NNs
» The evolution function is learned in the unobserved state space

» Better than working directly in the observation space
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NNs as surrogate models for solving PDEs
Discrete space models

Learning from partial observations — ResNets — Unets —> regular grids
v Message passing PDE solvers — Graph NNs —> irregular meshes
Transformers — > regular or irregular meshes



NN surrogates — discrete space models — irregular meshes
Graph Neural Networks

» GNNs are well adapted to handle irregular meshes
» Mesh nodes are mapped to a graph which is processed with a GNN
The GNN acts as a time stepper Neural ODE solver
» Several efforts for developing neural PDE solvers based on graphs

Sanchez-Gonzales et al. 2020, Belbute-Peres et al. 2020, Pfaff et al. 2021, ...
Large scale implementation: Graphcast (Google 2022)

» Example: Brandstetter et al. 2022 - Message Passing Neural PDE
Solvers

» Obijective: forecast spatio-temporal dynamics
Auto-regressive model u(x,t) = u(x, t + At) - u(x, t + 2At) ...
Representative GNN solver

O Handle multiple situations
0 Multiple resolutions, boundary problems, parametric PDEs, etc
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NN surrogates — discrete space models — irregular meshes
Message Passing Neural PDE Solvers (Brandstetter et al. 2022)

» Framework: Encode-Process-Decode (Sanchez-Gonzales 2020)

» Process: message passing on the graph node embeddings

Fig. Bransdtetter et al. 2022

Node-wise mapping Message passing Node-wise shallow
to the hidden space 1D convolution

output time

==

input time

—_—

MLP m 5 i
L T
| MLP oo —p

Node i,step k

Encoding Process in latent space Decode
Input: last K values at each node i | M message passing steps Output: next K values
f2 =Encode(uX7X, ..., uk) fifm=1..M uktl L ultK
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NN surrogates — discrete space models — irregular meshes
Message Passing Neural PDE Solvers (Brandstetter et al. 2022)

» Example

, Jou(tx) _  du(tx) d%u(t,x)
» Burgers equation 1D.—at =-—u——+v—=-—+ f(t,x)

simplified equation for fluid flows, u velocity field, v viscosity coef.

Experiments performed at different resolutions

Color = time

. Exemplary 1D rollout of shock f9rmation at different resolutions . —

1.0 i ' : ! : ) —— t=03s
— t=06s

0.51 — t=10s
t=13s

00 t=16s
‘:’ t=19s
031 t=22s
1.0 t=2.6s

) nx=200 nx=100 nx=50 nx=40 | t=2.9s
-1.5{ 9round truth prediction prediction ; prediction ) t=32s

! . ! —— t=35s

° ¢ 0 8 0 8 0 B =395

X

Figure 4: Top: Exemplary 1D rollout of shock formation at different resolutions. The different
colors represent PDE solutions at different timepoints. Both the small and the large shock are neatly
captured and preserved even for low resolutions; boundary conditions are perfectly modeled. BOT-

Fig. Branstetter 2022
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NNs as surrogate models for solving PDEs
Discrete space models

Learning from partial observations — ResNets — Unets —> regular grids
Message passing PDE solvers — Graph NNs —> irregular meshes
v Transformers — > regular or irregular meshes



NN surrogates — discrete space models -Transformers

» Why transformers for modeling dynamical systems?

» They allow us to leverage the recent developments in vision/ NLP for
modeling complex dynamics

» They are the core components of recent neural solvers

» They operate on tokenized representations (vectors) of the input/
output data

» Either directly in the physical space

» Most often on a latent representation, leveraging an Encode-Process-
Decode framework

» Architectures are often inspired from Vision Transformers
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NN surrogates — discrete space models —Transformers
Attention mechanisms

2 core attention mechanisms used in transformers

( Self Attention

_ Sefattntionmodus S.A. captures contextual

Z,  Atentionweights  Z' representation of the inputs

- | | ayq| Az | | 7'y = a11Z, + a2,
amoeddifd : Complexity O(N?) with N
| @21 %22 | Z'y = ay1Zy + ayZ, . .
, g the size of the input
\_ P wEe@z) sequence )
— Cross Attention
[ v\ Y2 ¥ \
Key, Value Z'y = ey WY +a W, + @ W C.A. maps a sequence of
E A vector (V) of variable size
4 7, N into a sequence of
oy | ||| [ vector (7') of fixed size M
10 i s I O O

Zy aij = a;j(Z,Y)) 2% /
Complexity: O(N(Y)IN(Z))

2025/06/16
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NN surrogates — discrete space models —Transformers
Vision transformers (Dosovitskiy et al. 2021)

g ViT
* Splits the image in patches
* Embeds them linearly and feed them to a transformer encoder
\ » Stacked encoders could be used for time stepping

Vision Transformer (ViT) ] Transformer Encoder
1
% !
:
1
‘ Transformer Encoder ’ :
1
. 1 =
| . e GOOOOO OO | | [
Flg . DOSOVItS kly et al . 202 1 ‘;:’:::::::T'I;m: [ Lincar Projection of Flattened Patches J 1
ST I A
pER-  —AEENENESE
Y 1 1
]

Embedded
Patches

Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token™ to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al. (2017).

Lots of transformer/ attention variants in order to
* Adapt to the physics/ Limit the complexity
* Implement the encode/process/decode process
\ * Examples follow

J
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NN surrogates — discrete space models —Transformers
BCAT model (Liu et al. 2025)

» Simple autoregressive transformer (decoder as in GPT/ Llama) for
spatio-temporal prediction (sequential)

Process: Causal GPT like decoder:

Multi-head
Attention
Norm

Input Sequence

predicts next frame token
sequence

a(-, ) (-, 1) a(-, ts)

[MLP Diecoder] [MLP Diecoder] MLP Decoder

v v e
. & i : J MLP decoder: back to physical
h ; N \ g_\ space
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NN surrogates — discrete space models —Transformers
Transformers - BCAT model (Liu et al. 2025)

» Simple autoregressive transformer for spatio-temporal prediction

Table 1: Main Results and Comparisons with Baselines. The numbers reported are relative
L? errors (%). The averages are taken with respect to the 6 distinct families listed in the columns
of the table. We bold the best result in each column.

Model Param PDEBench PDEArena CFDBench Average
SWE CNS* INS | NS NS-cond .

DeepONet  3.5M | 3.55 7.41 64.61 3533  51.85 12.50 20.21

FNO 0.6M | 371 631 36.84 38.67  55.63 8.52 24.95

UNet 56M | 033 3.10 343 1256  16.82 0.76 6.18

MPP-B  116M | 1.02 190 752 571 1257 1.23 4.99

Multi-head ViT 162M | 025 149 282 7.05 1241 0.55 4.10
" MPP-L  407M | 047 153 642 464  9.64 0.73 3.01
DPOT-M  122M | 054 1.01 520 492 855 0.64 3.47

PROSEFD 165M | 0.28 141 275 527 961 0.61 3.32

e S oSS DIEL MO o emogm o om |k

(2] (24 (2o (2] (2] (3] i [20] (B (2]

[MLP DlecoderJ [MLP D;coderJ [MLP DlecoderJ

v
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NN surrogates — discrete space models —Transformers
Transolver (Wu et al. 2024)

» Regular patches do not capture the underlying physics
» Obijective: learn « physical » tokens and decrease attention complexity

» Physical tokens

Decompose automatically the mesh into domains where points share similar
physical states

Encode each slice (domain) into a « physical » token

(o) Discrofized Domain  (b) Physics Domain 1 L‘j Tol k‘{\ "z D
b ,f %

» Bovel

Slices for car surface

Front

pressure, 3D mesh

e
-~ /
4
vy “\
74 \
j H
[
e Slice 2 Slice M

Figure 2. Learning physics-aware tokens from Transolver slices.

» Decrease attention complexity
Apply attention on these physical tokens instead of regular patches or mesh points

» Operates on point clouds, meshes, regular grids
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NN surrogates — discrete space models —Transformers
Transolver (Wu et al. 2024)

Initial state, N
mesh points

M Slices

M Tokens

1
|

i W
| M—

| ¥
| ," Deslice
I | Attention i
| O, | for Tokens
| i |
| |
| |
|

|

5 Physicsaware Token
—> Aggregate & Broadcast

\ =
/ f ,

2 E Attention

AL
(A

for Tokens

Attention
on tokens

Figure 3. Overall design of Transolver layer, which replaces the standard attention with Physics-Attenfion. Each head encodes the {nput
domain into a series of physics-aware tokens and then captures physical correlations under intricate geometrics by attention among tgkens.

Back to mesh
space
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Modeling Spatio-temporal dynamics
with Neural Networks

NNs as surrogate models for solving PDEs — Discrete space models
NNs as surrogate models for solving PDEs — Continuous space models




NN surrogates — Operators

» Instead of learning maps between vector spaces (functions), learn
maps between function spaces (operators)

» Images for example are considered as continuous functions

» The objective is then to learn the operator mapping an input image to an
output one

» Objectives
» Handle irregular and diverse geometries (inputs): meshes, point sets,
grids
» Query at any space-time coordinate in the output space
» Examples: 3 families of methods
» Frequential representations - Neural Fourier operators (2020)
» Implicit Neural Representation - CORAL (2023)
» Attention mechanisms + Transformers - AROMA (2024)
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NNs as surrogate models for solving PDEs —
Continuous space models

v" Fourier Neural Operators

CORAL:COordinate-based model for opeRAtor Learning
AROMA: Attentive Reduced Order Model with Attention




NNs as surrogate models for solving PDEs — Operators
Fourier Neural Operator (Li et al. 2021)

» We consider
» P = V(Q c R%; R"),‘U =U((Q c R%, R™) two function spaces
» G:V — U a non linear unknown mapping between the two function
spaces

FNO considers mappings G that correspond to the solution operator of a
parametric PDE

» Obijective

» Learn Gy an approximation of G from a finite set of samples

» Samples are provided as p-points discretization of functions v € V and
ueU

i.e.in practice we learn from discrete spaces, the representation of the
continuous functions v € V and u € U
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NNs as surrogate models for solving PDEs — Operators
Fourier Neural Operator (Li et al. 2021)

» Classical neural network

u = (KTO Op ©+++0 0y © Kto +++0 ;0 KO)U

» With K; a linear operator, g; a non linearity, u, v vectors

» Neural operators (simplified)

» Follow a similar framework but u and v are no more vectors but
functions

Vi1 (X) = Opyq (Kt (ve) (x))

» With K;(v;) an integral operator

K, (v) (x) = fﬂ e (6, )0 () dy

» »:(x,y)is a kernel function
» v Q> R v1:Q > R™ Q c RY abounded space
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NNs as surrogate models for solving PDEs — Operators
Fourier Neural Operator (Li et al. 2021)

» How to learn the kernel function 3,?
» Let us consider the simplified update rule

u(x) = KW)(x) = j 2 (x,9)v(y)dy

Q

» withv,u:Q - R"
» FNO works in Fourier space
» u(x,y) = x(x — y) is a convolution operator

ulx) = (e*v')(x)

» Convolution theorem:

u(x) =FH(FG).F(w))(x)

» Convolution in space is equivalent to pointwise multiplication in Fourier
domain

» F(x)is a linear transformation
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NNs as surrogate models for solving PDEs — Operators

Fourier Neural Operator (Li et al. 2021)
» Fourier transform — Linear Transform — Inverse Fourier

)@ O [um=FFe0.Fenm

R is a linear operator — implemented as a tensor
F is implemented via a Fast Fourier Transform (complexity nlogn, n nb of
spatial points)
» Operates on regular grids
 FFT is independent of the grid size
» Could be used on resolutions different from the training ones

[x]
FNO model

\ Fig Li et al. 2021 j
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NNs as surrogate models for solving PDEs — Continuous space models
Fourier Neural Operator (Li et al. 2021)

» Example: zero shot super-resolution
» 2 D Navier Stokes, vorticity form, viscuous incompressible fluid
%W(x, t) + ulx, t). Vw(x, t) = vAw(x,t) + f(x),x € (0,1)%,t € (0, T]
V.u(x,t) = 0,x € (0,1)%,t € (0,T)

u(x, t) velocity field, w(x, t) vorticity, characterizes local rotation of the

fluid
» Fig. lllustrates super-resolution: trained at 64x64, test on 256x256
Initial Vorticity t=15 t=20 t=25 t=30

™ hal Ne
», IT&{

Prediction

Fig Li et al. 2021 \ 'L

Zero-shot super-resolution: Navier-Stokes Equation with viscosity v = le—4; Ground truth on top and
4  prediction on bottom; trained on 64 x 64 x 20 dataset; evaluated on 256 x 256 x 80 (see Section 5.4).

S
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NNs as surrogate models for solving PDEs —
Continuous space models

Fourier Neural Operators
v" CORAL:COordinate-based model for opeRAtor Learning
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NNs as surrogate models for solving PDEs — Operators
Neural Fields (Implicit Neural Representations)

» Coordinate-based approximation of functions
» Continuous representations of objects as coordinate-dependent functions

» Appeared initially as a novel way to represent 3D shapes in place of discrete
representations

Example: signed distance

o * Decision
. boundary
«  of implicit

o Surace

. ..
¢ SDF>0
-.

@ SDF<0 '

The shape is fully described by the NN parameters Fig. Park et al. 2019
Mesh-free approach — independent of the resolution: learn from point sets

» References: Sitzmann et al. 2020, Fathony et al., 2021, Tancik et al. 2020, etc
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NNs as surrogate models for solving PDEs — Operators
Neural Fields (Implicit Neural Representations)

» Learning several images
» A neural field model represents one image

» How to represent multiple images using a single model?
Condition the neural field on a compact code specific of an image

Code z;

This code z; could be learned e.g. through auto decoding by gradient descent and
is specific to an image

Conditioning is performed through e.g. a hypernetwork that adapts some
networks parameters to each image

Network weights (in blue) are shared across images
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NNs as surrogate models for solving PDEs — Operators
CORAL : Operator Learning with Neural Fields (Serrano et al. 2023)

» Tasks: learn mappings between input — output functions

Initial Value Problem

Direct forecasting
(IVP)
Ug = Ur

Dynamics modeling
U = Up4q

Momentum

wo > Wy

(a) Cylinder

(b) Navier-Stokes (¢) Shallow-Water

Geometry aware
inference

ageo — Uso

47

Geometry-aware inference

Mach number

Stress
_
X0 XV
(d) Elasticiry (e) NACA-Euler

Figure 1: Illustration of the problem classes addressed in this work: Initial Value Problem (IVP) (a),
dynamic forecasting (b and ¢) and geometry-aware inference (d and e).
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NNs as surrogate models for solving PDEs — Operators
CORAL : Operator Learning with Neural Fields - (Serrano et al. 2023)

Inference
Encode-Process-Decode framework

Input Output
obs. input ) output output
[ space ] [Iunction [ space ] [function]
e * || . @ Ju(a)
L 2 * L 2
& Q * Rda L 4 Q Rdu
X |y
encode L predicted output
Encode inputs u va'ues_gn)guerv Decode
gri
| 1
..... 2o —QG)— %
forecasted
code
Process
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NNs as surrogate models for solving PDEs — Operators

CORAL : Operator Learning with Neural Fields - (Serrano et al. 2023)

Inference

Encode

Input

obs.
space

input \
function

?z L 2

*

2

Q *

*
#u(z)

*

R4a

KW

encodsg

inputs

Neural Field +
Hyper-network

Output

1

output output\
space function

?- il s

R

predigted output
valugs on query

grid X
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NNs as surrogate models for solving PDEs — Operators
CORAL : Operator Learning with Neural Fields (Serrano et al. 2023) -
Inference

Forecasting on Shallow-Water
Geometry aware inference: (vorticity)

NACA-Euler (Mach number)

Robustness to changes of grid
and time extrapolation

Predicted trajectory
. T

ing  Obscrvation
grid =0 Int [ Oue-t > =T
o ...‘..“
- ..‘...‘

Figure 13: Prediction MSE per frame for CORAL on Shallow-Water with its corresponding training
grid A" . Each row corresponds to a different sampling rate and the last row is the ground truth. The
predicted trajectory is predicted from t = 0 to t = 7", In our setting, 7" = 19 and 7" = 39.

ul
rate

Figure 14: CORAL predictions on NACA-Euler
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NNs as surrogate models for solving PDEs —
Continuous space models

Fourier Neural Operators
CORAL:COordinate-based model for opeRAtor Learning
v~ AROMA: Attentive Reduced Order Model with Attention




NNs as surrogate models for solving PDEs — Operators
AROMA: Attentive Reduced Order Model with Attention (Serrano et al.

2024)

» Principled Framework:

» Properties
Handle diverse geometries: inputs and outputs may consist in point sets, grids,
irregular meshes
Captures local spatial information
Can be queried at any spatial position

» Demonstrates how modern NN components allow building versatile
PDE solvers

Encode/ Process/ Decode framework

O Encoding: cross-attention maps variable-size inputs to a fixed-size compact
latent token space encoding local spatial information

O Processing: a diffusion transformer architecture to model dynamics and
exploit spatial relations locally and globally via self-attention + model
uncertainty

O Decoding: uses a conditional neural field + cross-attention to query
forecast values at any spatial point within the equation's domain
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NNs as surrogate models for solving PDEs — Operators

AROMA: Attentive Reduced Order Model with Attention (Serrano et al.
2024) - General framework

Nx2 function values u'e RY*¢
predicted value

,&H—At(m)
A

latent Ikens with a predicted tokens
compressed dimension \

Encoder module

oy Encode
' geometry ;

Decoder -

Te Rﬂ;fxd €0 X Zt cR W xh Z"tim = RMxh
W tokens geometry-aware tokens / coordinate query

Cross-attention encoder: ut —» 7zt

« Encodes variable size discretized input u() into a fixed size & small
dimensional sequence of latent embedding tokens Z

» 7 encodes local spatial information on problem geometry + variable
values
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NNs as surrogate models for solving PDEs — Operators
AROMA: Attentive Reduced Order Model with Attention (Serrano et al.
2024) - Cross-attention encoder captures spatial attention

Example: Cross attention on cylinder flow

» Tokens encode local spatial
information — cross attention

b linder fl d h
Cylinder flow ground trut between T9¢° tokens and "x"

2@ e
S00000000g0920 000000000
U Dpeeedse g @LITHos 060880
00%0 00 Ugpeeeele @edl i i onnde @

e .‘:...%':ﬁ::.:;”. w:.’. : o

J \\ J
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NNs as surrogate models for solving PDEs — Operators
AROMA: Attentive Reduced Order Model with Attention Attention
(Serrano et al. 2024) -General framework

Processor

99

N!c

latent tokens with a predicted toKkens
compressed dimension \

coordinates x € ]RNXZ function values u'e R

predicted value

,&H—At(m)
A

i | Diffusion

Encode |
; Transformer [

' geometry

@ . :\\ Refiner Decoder’/.‘
L . ettt t NV .
Te Rde €0 X Zt c RMXh Zt+At RMx*
learnable tokens geometry-aware tokens K j coordinate query

Time stepping transformer: Zt — Zt+4t

* Learns the dynamics in the small dimensional latent space
» Self attention models relations between spatial latent tokens
* Inference: dynamics is enrolled in the latent space starting from an
initial condition— low complexity
» Diffusion: introduces a stochastic component
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NNs as surrogate models for solving PDEs — Operators
AROMA: Attentive Reduced Order Model with Attention Attention

(Serrano et al. 2024)-General framework

Decoder module

56

coordinatesz € RY*%  function values u'e RY*¢

Encode

: geometry
RS sy
= RM xd
learnable tokens geometry-aware tokens

latent tokens with a predicted tokens

compressed dimension \
i | Diffusion ||: .
7| Transformer "_.
Latent| ! J
} . Refiney . Decoder
t L
Zt e RMxh FUHAL = pMxh
coordinate query

Crmeasanin

predicted value

,&H—At(m)
A

Cross-attention neural fields decoder: Zt+At — t+At

« Maps the latent representation Z:*2t to the original physical space

Can be queried at any position x of the physical space
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NNs as surrogate models for solving PDEs — Operators
AROMA: Attentive Reduced Order Model with Attention - (Serrano
et al. 2024)Cross-attention encoder captures spatial attention

Example: Burgers equation — perturbation analysis on the tokens

» Burgers equation ground » Tokens encode local spatial
truth information

gt

Token O

pred 200 pred
"
" Token 1
-0s 3 a5
N
“
-
- ;
50 pred pred
e L5
25 L0 10
. Token 2 . Token 3
100 . o 128
100
s H o5
"
"
.
2 , 3 % 5 a 5 5

I\ J
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Conclusion

» Survey of main current data-driven methods for modeling physical
dynamics
» Benefits from advances in different ML fields (Vision, NLP, ...)
» Large size applications deployed in some domains e.g. weather forecast
» Gap to real world applications in many domains e.g. CFD

» Takeaways
» Scaling is a central problem
» Latent models are probably the correct way to proceed

» Importance of efficient and reliable « physical » encodings / decoding
operating on multiple geometries

» Design of scalable neural operators
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» Thanks for your attention
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