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 Context:
 AI4science

 Background
 Neural networks and ordinary differential equations

 NNs as surrogate models for solving PDEs and modeling Spatio-
temporal dynamics
 Focus: data-driven approaches

 Discrete space models – 3 examples
 ResNets, Graph Neural Networks, Transformers

 Neural operators & Continuous space models– 3 examples
 Frequential representations
 Implicit Neural Representation
 Attention mechanisms + Transformers



Context: AI4Science



AI4Science as a new scientific paradigm
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• Paradigm shift: from explicit formulation to implicit knowledge discovery
• Emerged in 2018 – rapidly growing field

• Involves many scientific communities

AI4Science paradigm changes
How research is done: From hypothesis generation to data analysis, 
experimentation, and discovery.
The questions we can ask: Enabling exploration of complexity and 
scale previously impossible.
The pace of discovery: Accelerating insights in fields like drug 
discovery, material science, climate modeling, and fundamental physics.



Context - AI for Science - AI as digital twins
Weather forecasting
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2022-2024 – Foundation Models for weather 
prediction (ERA5 dataset 40 years hourly 

reanalysis data)

GraphCast – Google & DeepMind 2022
https://arxiv.org/abs/2212.12794

ClimaX – Msoft & UCLA 2023
https://arxiv.org/abs/2301.10343

Pangu-Weather – Huawei 2023
http://arxiv.org/abs/2211.02556

FourCastNet – NVIDIA&Lawrence Berkeley 
lab.&al. 2022

http://arxiv.org/abs/2202.11214
Neural General Circulation Model –
Google 2023

https://arxiv.org/abs/2311.07222
Aurora – Microsoft 2024

https://arxiv.org/abs/2405.13063

Aurora (Bodnar et al. 2024)

• Integrated Forcasting System 
Numerical simulation (ECMWF): 
65 minutes on 352 high-end CPU 
for a 10-day forecast 

• Aurora:
• Inference: less than 1 mn on 

one A100 GPU roughly a 
×5,000 speedup over IFS

• Pre-training, 2.5 weeks on 32 
A100



Context - AI for Science – Biology & Drug design
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 Alphafold: Tertiary protein
structure prediction
 (2018) - Several modules 

trained separately
 (2020) - Evoformer, end-to-end 

training
 (2024) - Pairformer Structure 

of protein with DNA, RNA, 
ligands

 Alphafold server

 Drug design: Speed up the 
drug discovery process
 Designing molecules/ 

compounds with high binding 
affinity to given pathogenic
protein targets

 Inhibitor compounds against
tubercolosis

Fig - Google DeepMind 
Predicted enzyme 
structure (blue) and 

experimental structure 
(gray)
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Fig. Wu et al. 2025



Context - AI for Science AI as a reasoning engine -
AI4Math - Example MATH Benchmark
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 Dataset
 12.5K problems from high 

school competitions + large 
pretraining dataset

 Models: LLMs

Performances
 2021

 2025 vals.ai/benchmarks

(Hendriycks et al. 2021)

(Yang et al. 2024)



Neural networks and ordinary
differential equations

NNs as numerical schemes for solving ODEs



NNs as numerical schemes for solving ODEs
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 Several NNs use skip 
connections, e.g. ResNet

Input 𝑥 is progressively modified by 
a residual 𝑓 𝑥,𝜃

 ODE for initial value problem

  ௗ௫
ௗ௧
ൌ 𝑓ሺ𝑥 𝑡 ;𝜃 𝑡 ሻ for 𝑡 ∈ ሾ0,𝑇ሿ, 

𝑥 0 ൌ 𝑥
 What is the value of 𝑥 𝑇 ? 

 Equivalent integral formulation

 𝑥 𝑇 ൌ 𝑥 0   𝑓 𝑡, 𝑥 𝑡 𝑑𝑡்
ை

  𝑓 𝑡, 𝑥 𝑡 𝑑𝑡்
ை is approximated

via numerical integration
 Exemple: Euler numerical scheme

 𝑥௧ାଵ ൌ 𝑥௧  ℎ𝑓 𝑥௧ ,𝜃௧ , 𝑥 0 ൌ 𝑥

Forward pass of ResNet is similar to Euler scheme for solving IVP 
(E 2017, Haber 2017, Chang 2018, Lu 2018, …)

𝑥௧ାଵ ൌ 𝑥௧  𝑓ሺ𝑥௧, 𝜃௧ሻ𝑥௧

Resnet Module



NNs as numerical schemes for solving ODEs – Learning problem
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 Learning problem with ResNets
 𝑀𝑖𝑛ఏ    𝐿 𝐹 𝑥,𝜃 ,𝑦

𝑠. 𝑡.     𝑥୪ ൌ x୪ିଵ  𝑓ሺ𝑥୪ିଵሻ , 𝑙 ൌ 1 …𝑇, x ൌ x

 𝑥 input, 𝑦 target, 𝜃 parameters, 𝑥 layer 𝑙 activation, 𝑇 layers
 Solving this problem requires alternating

 Forward pass – Euler numerical scheme for solving


ௗ௫
ௗ௧
ൌ 𝑓ሺ𝑥 𝑡 , 𝜃 𝑡 ሻ for 𝑡 ∈ ሾ0,𝑇ሿ, 𝑥 0 ൌ 𝑥

 Backward pass – differentiation through Euler scheme for solving


ௗఏ
ௗ௧
ൌ െ𝜖 డ ఏ ௧  

డఏ , 𝜃 0 ൌ 𝜃 &(gradient flow)

 Could this idea be generalized?
 Replace Euler with any numerical integration scheme, explicit or implicit

The constraint describes the 
Forward computation graph of 
the Resnet
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NNs as numerical schemes for solving ODEs - Continuous limit

 Continuous limit
 If we let ℎ → 0 in Euler, the ResNet learning problem becomes
 𝑀𝑖𝑛ఏ𝐿 𝐹 𝑥,𝜃 ,𝑦

 𝑠. 𝑡.     డ௫
డ௧
ൌ 𝐹 𝑥 𝑡 ,𝜃 𝑡 , 𝑡 ∈ ሾ0,𝑇ሿ , 𝑥 ൌ 𝑥

 Two different families of methods for solving the learning problem:
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Fig. NeuralODE, Chen et al. 2018

Discretize then Optimize
(DTO)

• Discretize in time and 
then solve

• Framework used in 
this presentation

Optimize then Discretize
(OTD)

• Solves the continuous
optimization problem
via adjoint method

• Popularized by 
NeuralODE (Chen et 
al. 2018)



NNs as numerical schemes for solving ODEs - summary
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 The dynamics of Neural Networks – explained by ODEs
 NNs with an infinite number of layers can be modeled as ordinary

differential equations (ODE)
 Inference and training can be formulated as solving ODEs

 In practice
 This helped popularize the use of differentiable numerical solvers in the ML 

community
 They are now implemented in deep learning libraries, e.g. PyTorch
 Makes possible the integration of numerical solvers and deep learning

components in hybrid systems
 Key for modeling neural solvers



Modeling Spatio-temporal dynamics 
with Neural Networks

NNs as surrogate models for solving PDEs – Discrete space models
NNs as surrogate models for solving PDEs – Continuous space models

& Neural operators



Modeling Spatio-temporal dynamics with Neural Networks
Motivations
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 Applications domains - examples

 Objectives
 Alternative to numerical solvers

 Reduce computational cost – e.g. CFD Surrogate Models/ Reduced Order
Models

 Complement physical models: Hybrid Systems
 Replace solvers

Computational Fluid Dynamics Earth System Science –
Weather prediction/ Climate

Graphical design

Tompson et al. 2017 

DrivaerNet 2025

ECMWF 2025



Modeling Spatio-temporal dynamics with Neural Networks
Frameworks
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Deep learning landscape for modeling dynamics and solving PDEs
Focus of the presentation: data-driven approaches

Present PINNs of physics augmented 

Neural 
Surrogates

Hybrid 
modeling

Neural solvers

Amount of data

Physics 
prior

PINNs (Raissi et al. 2017)

APHINITY (Yin et al. 2020)

Solver-in-the-loop (Um et al. 
2020)

Neural Operators

GraphCast, Aurora, etc.

Learned solver (Kochkov et al. 
2021) F

O
C
U
S



Modeling Spatio-temporal dynamics
with Neural Networks

 NNs as surrogate models for solving PDEs – Discrete space models
NNs as surrogate models for solving PDEs – Neural operators & 

Continuous space models



NNs as surrogate models for solving PDEs
Discrete space models
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 Space discretization is performed a priori under the form of:
 a regular grid
 irregular meshes, e.g. in fluid mechanics

 Classical NN models s.a. CNNs, UNets, Graph NNs, Transformers 
can then be used as time steppers on these discretized
representations

 This principle is similar to the method of lines for solving PDEs
 Perform spatial discretization + algebraic approximation of spatial 

derivatives
 Solving the PDE amounts at solving a system of ODEs that can be solved

with a numerical ODE solver



NNs as surrogate models for solving PDEs
Discrete space models

 Learning from partial observations – ResNets െ regular grids

Message passing PDE solvers – Graph NNs െ irregular meshes

Transformers െ > regular or irregular meshes

2025/06/16ML for Physical Dynamics, an introduction - P. 
Gallinari
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NN surrogates – discrete space models – regular grids
Learning from partial observations (Ayed et al. 2019- 2022)
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 Forecasting non linear dynamical systems from observations only
 Assumption: partial observations

 The state of the system is only partially observed

 Objective
 Learn the evolution of the system (observations and state) from scratch 

with a NN



NN surrogates – discrete space models – regular grids
Learning from partial observations (Ayed et al. 2019- 2022)

 Assume an (unknown) underlying dynamical system with initial 
conditions



𝑋                  Initial state of the system 
ௗ
ௗ௧

ൌ 𝐹∗ 𝑋௧                    State dynamics
𝑌௧ ൌ 𝐻 𝑋௧                           Observations

 Variables
 𝑋௧ ∈ 𝑅ௗ : state of the system at time 𝑡

 function of time and space, partially observed
 e.g. 3 D dynamics of the Ocean: velocity, pressure on the ocean surface

 𝑌௧ : observation, i.e. only available data for training ሼ𝑌௧, 0  𝑡  𝑇ሽ
 e.g. satellite observations: temperature, salinity, ocean color, waves height, …

 𝐻: measurement process linking state to observation is known
 𝐹∗describes the evolution of the state and is unknown

ML for Physical Dynamics, an introduction - P. Gallinari 2025/06/1620



NN surrogates – discrete space models – regular grids
Learning from partial observations (Ayed et al. 2019- 2022)
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 Objective
 Learn the evolution of the system (observations and state) from scratch 

with a NN
 Learning problem

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
 ிഇ, ഇ

 𝐸ሾ∑ 𝑌௧ െ 𝐻 𝑋௧ ଶ
ଶ்

௧ୀ learn trajectories from observations

 Subject to ∀𝑡, ௗ

ௗ௧

ൌ 𝐹ఏ 𝑋௧ , learn the state dynamics

 𝑋 ൌ 𝑔ఏሺ𝑌  , 0 ൏ 𝑘  𝐾ሻ learn initial state from previous
observations

 Implementation
 Evolution function 𝐹ఏ is implemented as a convolutional ResNet, similar to 

forward Euler solver for ODEs

 Solve ௗ

ௗ௧

ൌ 𝐹ఏ 𝑋௧
  𝑋௧ାఋ௧

ఏ ൌ 𝑋௧ఏ  𝛿𝑡𝐹ఏሺ𝑋௧ఏሻ
 𝑔ఏ is a Unet or a ResNet



NN surrogates – discrete space models – regular grids
Learning from partial observations (Ayed et al. 2019- 2022)
Examples
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 NEMO – Nucleus for European Modelling of the Ocean Engine
 State: 7 variables, we make use only of 2 variables corresponding to the 

velocity field
 Observations: Sea Surface Temperature
 Initial state: interpolated from previous observations

Targets (𝑌௧)

Targets (𝑋௧)

Predictions (𝑌௧)

Predictions (𝑋௧)

Conv-LSTM



NN surrogates – discrete space models – regular grids
Learning from partial observations (Ayed et al. 2019- 2022)
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 Summary
 Modeling a state space system with NNs
 The evolution function is learned in the unobserved state space
 Better than working directly in the observation space



NNs as surrogate models for solving PDEs
Discrete space models

Learning from partial observations – ResNets – Unets െ regular grids
 Message passing PDE solvers – Graph NNs െ irregular meshes

Transformers െ > regular or irregular meshes

2025/06/16ML for Physical Dynamics, an introduction - P. 
Gallinari

24



NN surrogates – discrete space models – irregular meshes
Graph Neural Networks
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 GNNs are well adapted to handle irregular meshes
 Mesh nodes are mapped to a graph which is processed with a GNN

 The GNN acts as a time stepper Neural ODE solver

 Several efforts for developing neural PDE solvers based on graphs
 Sanchez-Gonzales et al. 2020, Belbute-Peres et al. 2020, Pfaff et al. 2021, …
 Large scale implementation: Graphcast (Google 2022)

 Example: Brandstetter et al. 2022 - Message Passing Neural PDE 
Solvers
 Objective: forecast spatio-temporal dynamics

 Auto-regressive model 𝑢 𝑥, 𝑡 → 𝑢 𝑥, 𝑡  Δ𝑡 → 𝑢 𝑥, 𝑡  2Δ𝑡 …
 Representative GNN solver 
 Handle multiple situations
 Multiple resolutions, boundary problems, parametric PDEs, etc



NN surrogates – discrete space models – irregular meshes
Message Passing Neural PDE Solvers (Brandstetter et al. 2022)
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 Framework: Encode-Process-Decode (Sanchez-Gonzales 2020)
 Process: message passing on the graph node embeddings

Fig. Bransdtetter et al. 2022

Node 𝒊, step 𝒌
Encoding

Input: last 𝐾 values at each node 𝑖
𝑓 ൌEncode(𝑢ି , … ,𝑢)

Process in latent space

M message passing steps
𝑓,𝑚 ൌ 1 …𝑀

Decode

Output: next 𝐾 values
𝑢ାଵ, … ,𝑢ା



NN surrogates – discrete space models – irregular meshes
Message Passing Neural PDE Solvers (Brandstetter et al. 2022)
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 Example

 Burgers equation 1𝐷: డ௨ ௧,௫
డ௧

ൌ െu డ௨ ௧,௫
డ௫

 𝑣 డమ௨ ௧,௫
డ௫మ

 𝑓ሺ𝑡, 𝑥ሻ
 simplified equation for fluid flows, 𝑢 velocity field, 𝑣 viscosity coef.

Fig. Branstetter 2022

Experiments performed at different resolutions
Color = time



NNs as surrogate models for solving PDEs
Discrete space models

Learning from partial observations – ResNets – Unets െ regular grids
Message passing PDE solvers – Graph NNs െ irregular meshes

 Transformers െ > regular or irregular meshes

2025/06/16ML for Physical Dynamics, an introduction - P. 
Gallinari

28



NN surrogates – discrete space models -Transformers

2025/06/16ML for Physical Dynamics, an introduction - P. Gallinari29

 Why transformers for modeling dynamical systems?
 They allow us to leverage the recent developments in vision/ NLP for 

modeling complex dynamics
 They are the core components of recent neural solvers

 They operate on tokenized representations (vectors) of the input/ 
output data
 Either directly in the physical space
 Most often on a latent representation, leveraging an Encode-Process-

Decode framework
 Architectures are often inspired fromVision Transformers



NN surrogates – discrete space models –Transformers
Attention mechanisms
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S.A. captures contextual
representation of the inputs

Complexity 𝑂ሺ𝑁ଶሻ with 𝑁
the size of the input 

sequence

C.A. maps a sequence of 
vector (𝒀) of variable size
𝑁 into a sequence of 

vector (𝒁’) of fixed size 𝑀

2 core attention mechanisms used in transformers

Self Attention

Cross Attention



NN surrogates – discrete space models –Transformers
Vision transformers (Dosovitskiy et al. 2021)
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Fig. Dosovitskiy et al. 2021 

ViT
• Splits the image in patches

• Embeds them linearly and feed them to a transformer encoder
• Stacked encoders could be used for time stepping

Lots of transformer/ attention variants in order to
• Adapt to the physics/ Limit the complexity

• Implement the encode/process/decode process
• Examples follow



NN surrogates – discrete space models –Transformers
BCAT model (Liu et al. 2025)
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 Simple autoregressive transformer (decoder as in GPT/ Llama) for 
spatio-temporal prediction (sequential)

Patchify & flatten frames

MLP encoder: Sequence of tokens/ 
frames

MLP decoder: back to physical
space

Process: Causal GPT like decoder: 
predicts next frame token
sequence



NN surrogates – discrete space models –Transformers
Transformers - BCAT model (Liu et al. 2025)
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 Simple autoregressive transformer for spatio-temporal prediction



NN surrogates – discrete space models –Transformers
Transolver (Wu et al. 2024)
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 Regular patches do not capture the underlying physics

 Objective: learn « physical » tokens and decrease attention complexity
 Physical tokens

 Decompose automatically the mesh into domains where points share similar
physical states

 Encode each slice (domain) into a « physical » token

 Decrease attention complexity
 Apply attention on these physical tokens instead of regular patches or mesh points 

 Operates on point clouds, meshes, regular grids

Slices for car surface 
pressure, 3D mesh



NN surrogates – discrete space models –Transformers
Transolver (Wu et al. 2024)
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Initial state, N 
mesh points

M Slices M Tokens Attention 
on tokens

Back to mesh
space Deslice



Modeling Spatio-temporal dynamics
with Neural Networks

NNs as surrogate models for solving PDEs – Discrete space models
 NNs as surrogate models for solving PDEs – Continuous space models



NN surrogates – Operators
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 Instead of learning maps between vector spaces (functions), learn
maps between function spaces (operators)
 Images for example are considered as continuous functions
 The objective is then to learn the operator mapping an input image to an 

output one

 Objectives
 Handle irregular and diverse geometries (inputs): meshes, point sets, 

grids
 Query at any space-time coordinate in the output space

 Examples: 3 families of methods
 Frequential representations - Neural Fourier operators (2020)
 Implicit Neural Representation - CORAL (2023)
 Attention mechanisms + Transformers - AROMA (2024)



NNs as surrogate models for solving PDEs –
Continuous space models

 Fourier Neural Operators
CORAL:COordinate-based model for opeRAtor Learning
AROMA: Attentive Reduced Order Model with Attention

2025/06/16ML for Physical Dynamics, an introduction - P. 
Gallinari
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NNs as surrogate models for solving PDEs – Operators
Fourier Neural Operator (Li et al. 2021)                                                        
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 We consider

 𝒱 ൌ 𝒱 Ω ⊂ 𝑅ௗ;𝑅 ,𝒰 ൌ 𝑈ሺΩᇱ ⊂ 𝑅ௗᇲ; R୫ሻ two function spaces

 𝒢:𝒱 → 𝒰 a non linear unknown mapping between the two function
spaces
 FNO considers mappings 𝒢 that correspond to the solution operator of a 

parametric PDE 

 Objective
 Learn 𝒢ఏ an approximation of 𝒢 from a finite set of samples
 Samples are provided as p-points discretization of functions 𝑣 ∈ 𝒱 and 

u ∈ 𝒰
 i.e. in practice we learn from discrete spaces, the representation of the 

continuous functions 𝑣 ∈ 𝒱 and 𝑢 ∈ 𝒰



NNs as surrogate models for solving PDEs – Operators
Fourier Neural Operator (Li et al. 2021) 
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 Classical neural network

𝑢 ൌ ሺ𝐾்∘ 𝜎் ∘ ⋯ ∘ 𝜎௧ ∘ 𝐾௧∘ ⋯ ∘ 𝜎ଵ∘ 𝐾ሻ𝑣 

 With 𝐾௧ a linear operator, 𝜎௧ a non linearity, 𝑢, 𝑣 vectors

 Neural operators (simplified)
 Follow a similar framework but 𝑢 and 𝑣 are no more vectors but 

functions

𝑣௧ାଵ 𝑥 ൌ 𝜎௧ାଵ 𝐾௧ 𝑣௧ 𝑥  

 With 𝐾௧ 𝑣௧ an integral operator

𝐾௧ 𝑣௧ 𝑥 ൌ න 𝜘௧ 𝑥,𝑦 𝑣௧ 𝑦 𝑑𝑦
ஐ

 𝜘௧ 𝑥,𝑦 is a kernel function
 𝑣௧:Ω → 𝑅, 𝑣௧ାଵ:Ω → 𝑅, Ω ⊂ 𝑅ௗ a bounded space



NNs as surrogate models for solving PDEs – Operators
Fourier Neural Operator (Li et al. 2021) 
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 How to learn the kernel function 𝜘௧?
 Let us consider the simplified update rule

𝑢 𝑥 ൌ 𝐾ሺ𝑣ሻሺ𝑥ሻ  ൌ න 𝜘 𝑥,𝑦 𝑣 𝑦 𝑑𝑦
ஐ

 with 𝑣,𝑢:Ω → 𝑅

 FNO works in Fourier space
 𝜘 𝑥,𝑦 ൌ 𝜘 𝑥 െ 𝑦 is a convolution operator

𝑢 𝑥 ൌ 𝜘 ∗ 𝑣ᇱ 𝑥
 Convolution theorem:

𝑢 𝑥 ൌ ℱିଵሺℱ 𝜘 .ℱ 𝑣ᇱሻ 𝑥

 Convolution in space is equivalent to pointwise multiplication in Fourier 
domain

 ℱ 𝜘 is a linear transformation



NNs as surrogate models for solving PDEs – Operators
Fourier Neural Operator (Li et al. 2021) 
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 Fourier transform – Linear Transform – Inverse Fourier 

𝑢 𝑥 ൌ ℱିଵሺℱ 𝜘 .ℱ 𝑣ᇱሻ 𝑥

𝑅 is a linear operator – implemented as a tensor
ℱ is implemented via a Fast Fourier Transform (complexity 𝑛𝑙𝑜𝑔𝑛, 𝑛 nb of 
spatial points)

• Operates on regular grids
• FFT is independent of the grid size

• Could be used on resolutions different from the training ones

Fig Li et al. 2021

FNO model



NNs as surrogate models for solving PDEs – Continuous space models
Fourier Neural Operator (Li et al. 2021)
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 Example: zero shot super-resolution
 2 D Navier Stokes, vorticity form, viscuous incompressible fluid


డ
డ௧
𝑤 𝑥, 𝑡  𝑢 𝑥, 𝑡 .𝛻𝑤 𝑥, 𝑡 ൌ 𝜈Δ𝑤 𝑥, 𝑡  𝑓 𝑥 , 𝑥 ∈ 0,1 ଶ, 𝑡 ∈ ሺ𝑂,𝑇ሿ

 ∇.𝑢 𝑥, 𝑡 ൌ 0, 𝑥 ∈ 0,1 ଶ, 𝑡 ∈ 0,𝑇
 𝑢 𝑥, 𝑡   velocity field, 𝑤 𝑥, 𝑡 vorticity, characterizes local rotation of the 

fluid

 Fig. Illustrates super-resolution: trained at 64x64, test on 256x256

Fig Li et al. 2021



NNs as surrogate models for solving PDEs –
Continuous space models

Fourier Neural Operators
 CORAL:COordinate-based model for opeRAtor Learning

AROMA: Attentive Reduced Order Model with Attention

2025/06/16ML for Physical Dynamics, an introduction - P. 
Gallinari
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NNs as surrogate models for solving PDEs – Operators
Neural Fields (Implicit Neural Representations)
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 Coordinate-based approximation of functions
 Continuous representations of objects as coordinate-dependent functions
 Appeared initially as a novel way to represent 3D shapes in place of discrete

representations
 Example: signed distance

 The shape is fully described by the NN parameters
 Mesh-free approach – independent of the resolution: learn from point sets

 References: Sitzmann et al. 2020, Fathony et al., 2021, Tancik et al. 2020, etc

Fig. Park et al. 2019

𝒙
 
𝒚

 𝒛

Φሺ𝑥, 𝑦, 𝑧ሻ

2025/06/16



NNs as surrogate models for solving PDEs – Operators
Neural Fields (Implicit Neural Representations)
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 Learning several images
 A neural field model represents one image
 How to represent multiple images using a single model?

 Condition the neural field on a compact code specific of an image

 This code 𝑧 could be learned e.g. through auto decoding by gradient descent and 
is specific to an image

 Conditioning is performed through e.g. a hypernetwork that adapts some
networks parameters to each image

 Network weights (in blue) are  shared across images

𝒙
 

 𝒚

Φሺ𝑥, 𝑦; 𝑧ሻ

Code 𝑧



NNs as surrogate models for solving PDEs – Operators
CORAL : Operator Learning with Neural Fields (Serrano et al. 2023)
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 Tasks: learn mappings between input – output functions

2025/06/16

Direct forecasting
(IVP)

𝑢 → 𝑢்

Dynamics modeling
𝑢௧ → 𝑢௧ାଵ

Geometry aware
inference

 𝑎 → 𝑢௦



NNs as surrogate models for solving PDEs – Operators
CORAL : Operator Learning with Neural Fields - (Serrano et al. 2023) 
Inference
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Encode-Process-Decode framework

DecodeEncode

Process

Input Output

2025/06/16



NNs as surrogate models for solving PDEs – Operators
CORAL : Operator Learning with Neural Fields - (Serrano et al. 2023) 
Inference
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DecodeEncode

Input Output

Neural Field + 
Hyper-network

Neural Field + 
Hyper-network

Differentiable ODE solver
2025/06/16

DecodeEncode

Process



NNs as surrogate models for solving PDEs – Operators
CORAL : Operator Learning with Neural Fields (Serrano et al. 2023) -
Inference
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Geometry aware inference: 
NACA-Euler (Mach number)

Forecasting on Shallow-Water 
(vorticity)

Robustness to changes of grid
and time extrapolation



NNs as surrogate models for solving PDEs –
Continuous space models

Fourier Neural Operators
CORAL:COordinate-based model for opeRAtor Learning

 AROMA: Attentive Reduced Order Model with Attention
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Gallinari
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NNs as surrogate models for solving PDEs – Operators
AROMA: Attentive Reduced Order Model with Attention (Serrano et al. 
2024)
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 Principled Framework:
 Properties

 Handle diverse geometries: inputs and outputs may consist in point sets, grids, 
irregular meshes

 Captures local spatial information
 Can be queried at any spatial position

 Demonstrates how modern NN components allow building versatile 
PDE solvers
 Encode/ Process/ Decode framework
 Encoding: cross-attention maps variable-size inputs to a fixed-size compact 

latent token space encoding local spatial information
 Processing: a diffusion transformer architecture to model dynamics and 

exploit spatial relations locally and globally via self-attention + model 
uncertainty

 Decoding: uses a conditional neural field + cross-attention to query 
forecast values at any spatial point within the equation's domain



NNs as surrogate models for solving PDEs – Operators
AROMA: Attentive Reduced Order Model with Attention (Serrano et al. 
2024) - General framework
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Cross-attention encoder: 𝑢௧ → 𝑍௧

• Encodes variable size discretized input 𝑢ሺሻ into a fixed size & small
dimensional sequence of latent embedding tokens 𝑍

• 𝑍 encodes local spatial information on problem geometry + variable 
values

Cross-attention

Encoder module



NNs as surrogate models for solving PDEs – Operators
AROMA: Attentive Reduced Order Model with Attention (Serrano et al. 
2024) - Cross-attention encoder captures spatial attention
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 Cylinder flow ground truth

 Tokens encode local spatial 
information – cross attention 
between 𝑇 tokens and "𝑥"

Example: Cross attention on cylinder flow



NNs as surrogate models for solving PDEs – Operators
AROMA: Attentive Reduced Order Model with Attention Attention
(Serrano et al. 2024) -General framework
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Time stepping transformer: 𝑍௧ → 𝑍௧ା௧

• Learns the dynamics in the small dimensional latent space
• Self attention models relations between spatial latent tokens
• Inference: dynamics is enrolled in the latent space starting from an 

initial condition– low complexity
• Diffusion: introduces a stochastic component

Self-attention

Processor



NNs as surrogate models for solving PDEs – Operators
AROMA: Attentive Reduced Order Model with Attention Attention
(Serrano et al. 2024)-General framework
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Cross-attention neural fields decoder: 𝑍௧ା௧ → 𝑢௧ା௧

• Maps the latent representation 𝑍௧ା௧ to the original physical space
• Can be queried at any position 𝑥 of the physical space

Cross-attention

Decoder module



NNs as surrogate models for solving PDEs – Operators
AROMA: Attentive Reduced Order Model with Attention - (Serrano 
et al. 2024)Cross-attention encoder captures spatial attention
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 Burgers equation ground
truth

 Tokens encode local spatial 
information

Token 0 Token 1

Token 2 Token 3

Example: Burgers equation – perturbation analysis on the tokens



Conclusion
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 Survey of main current data-driven methods for modeling physical
dynamics
 Benefits from advances in different ML fields (Vision, NLP, …)
 Large size applications deployed in some domains e.g. weather forecast
 Gap to real world applications in many domains e.g. CFD

 Takeaways
 Scaling is a central problem
 Latent models are probably the correct way to proceed
 Importance of efficient and reliable « physical » encodings / decoding

operating on multiple geometries
 Design of scalable neural operators
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 Thanks for your attention
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