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A posteriori estimates bound the error due to the discretization, the
approximate solution, the model etc. The influence of the mesh is
captured typically in the form

TeT

1/2
< Z indicatorr(disc_sol|r,data 7—)2)

Our goal now:

Analyze the potential of the use of this splitting
to construct ‘optimal’ meshes.
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Global plan

@ Approximation based on mesh adaptivity

© Mesh-adaptive FEMs

We first consider the simpler situation where the target function is
explicitly known to us, not only given implicitly by a PDE problem.

This is also relevant for approximating the data in PDE problem and for
coarsening in evolution problem.
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Local plan

e Approximation based on mesh adaptivity
@ Mesh adaptivity with piecewise constants

Let’s start with the simplest situation | can think of.
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Piecewise constants on uniform/arbitrary 1d-meshes

Given a 1d mesh M : 0 =xg < --- < xy = 1, define
S(M) == {s:[0,1] = R | sjf,_, x[ is constant}
and write My for the uniform mesh with N intervals, ie x; = i/N.

Consider approximation with elements from

Sy =S(Mp) and Iy =y S(M).

E—‘—-‘—M—‘—‘—ﬂa E-—o———o-c———‘—-—a
0 A o A

An element s in
@ Sy is determined by N constants,
@ X is determined by N constants and N — 1 breakpoints.
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Examples of linear and nonlinear approximation

Sy is a linear space, while X is not. In fact,
51,5 € Sy, € R = as; € Sy and s1 + s € Sy,

and oE—*—-———-o--’.z‘

+
seEXy, aER = as € Ly,

E-——.-a———.-]
51,5262/\/?5 S1+ s € Ly . P

=

However, X is mildly nonlinear in the sense that e——7
o A

S, EXN = S1+ S € Yopn.
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Global and local max norm errors

Given a fixed known v € C°[0,1] and s € S(M) piecewise constant, take

v = sl = max [v() ~ ()

as error notion. Given an interval | = [a, b] C [0, 1], introduce the cell or
local error

e(l) := min v —cllise(y = 3 (SL;pV |r}f v>

which satisfies

inf ||v— s, N,
A, v =l <)

ICl = e(l)<e(l'), lim e(l')—e(l)=0.
11\ 1|—0
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Equidistribution of local errors

Let tol > 0 and denote by #.M the number of cells in a mesh M.
We aim for a mesh M with

inf —5||jec <tol and #M minimal.
segn(M)Hv Slljec <tol and #M minima

Construct t; by tp := 0 and
tiv1 := max{t € [t;, 1] | e[t;, t[ < tol} whenever t; <1,
which essentially equidistributes the local errors.

Then the mesh given by tp < --- < ty is such a optimal mesh.
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Power functions and their regularity

For p > 0, consider
Vp(x) == x”

Then v, € C°[0,1] and
“

IVall o =
merely v, € Co”’[O, 1]

H HLl' /|Vp|_1

Note that monotoncity of v, yields

e,(l) = gng v = cll ooy = 2[v(max /) — v(min )] = %/l]v;

which may be considered a special case of the Bramble-Hilbert lemma
with a integrability shift.

Andreas Veeser Mesh adaptivity 9/48



About convergence rates

The interval length N1 leads to

-1
p y P > ]-a
f 2
SIen HVp s”oo p < ]0, 1[7

while equilibrating with ||v, v }) gives

HLl(t, L) HL1(0

f v, — =32
sIEnZ ||Vp 5||Loo >

No improvement for p = 1, case without ‘local features’.
Thus, mesh adaptivity may improve
error < @/\@

by reducing C or by enlarging r; the latter typically more dramatic.
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Piecewise constants in the DeVore diagram
A
In general, for v E@O, 1], (Hé [°,‘j

SESy
i f — = N_]' V- K h ! 1
inf v sl = O(N) <= v €BV[0,1]> (Kahane '61)

’\\ A,’
>0.w l(o’n

Recall Wr(0,1)(€)C°0.1] = r>0and r — 7 >
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Local plan

e Approximation based on mesh adaptivity

@ Equidistribution of local errors

Let’s see how far the idea of equidistributing the local errors goes . ..
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Abstract equidistribution

Suppose that, for any mesh T, its global error E(7) has the splitting

E(T) < G (Xrere(TP)P,

and allows for the following bound with shifted summability: for some
fixed g € ]0, p[ and C,, there holds

(X rere(T)9) Ve < G.

If can construct a mesh 7 with equidistributed local errors,
VT €T e(T)=1t forsomet >0,

then tN'/9 < G, and therefore
E(T) < GitNYP < G GNY/PY/a,
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Best error localizations in H*

Given a shape-regular triangulation 7 of Q C RY, set

S(T):={se€C%Q|s9a=0, VT €T s €Py(T)}.
Then, for any v € H}(Q), we have best error localization

inf [|V(v—5)|%q) < C inf_ V(v = p)lI32y:
canf IV =)l < 1;6;,,&'1(7)” (v = p)llz(m)

cf. Veeser '16 and Aurada et al. '13.
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Best error localizations - proof in 1d

Fix a cell I = [xj_1,x]. A local best approximation p; € Py[x;_1, x| is
determined only up to a constant, which we may choose such that
pi(xi—1) = v(xi-1).

Moreover, exploiting its Galerkin orthogonality with g(x) = x yields

0= /:l(v_p,yq/: /:l(v_p,-y:(v—p,-)(x,-)

Thus, gluing these p; together yields globally continuous best
approximation and so even C; = 1.
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Further best error localizations

There are further best error localizations for

e the L?-norm and reaction-diffusion norm
(Tantardini/Verfiirth /Veeser '15),

e the H 1-norm
(Blechta/Malek/Vohralik '16, Tantardini/Verfirth/Veeser '17),

@ other operators/elements
(Ciarlet/Vohralik '17, Ern/Smears/Vohralik, ... ).
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Generalized Bramble-Hilbert lemmas

If d = 2, the Sobolev embedding H1(Q) C W21(Q) implies the
Bramble-Hilbert-like inequality

inf — < C
pe]'},[;(T)HV(V P2y < Glviwa(r

Note that, for Q = B(0,1) C R?, we have

I[P € HY <= p>0 < |x|’ € W?P for some p > 1.

More generally, Veeser '16 and Gaspoz/Morin '14 show
inf ||V(v— < G inf Vv —p
pePu(T) IV( P)||L2(T) > %2 BeByy(T)? | P||L2(T)

< QIVVig (1m)

with

r<f{+1, ¢g>0 and r—Zzl—
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H'-equilibration in DeVore diagram

Thus, equilibration of inf,ep,(7) [V(v — p)ll 27y, T € T, would lead to
the rate

N—(r—l)/d

if ]Vv|Bg(Lq(Q)) < 0. Fo@plines and not only H?, cf. Petrushev '88.

There is a Besov regularity theory for PDEs starting with
Dahlke/DeVore '97. ~

. (44 'i .
2 4
At
—~N—+—t—t >

]
Uy 4 2 /(’
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Local plan

e Approximation based on mesh adaptivity

@ A (self-)adaptive mesh construction

Apart from 1d, we haven't constructed any meshes up to now.
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Bisection guided by maximum strategy

For simplicity, reconsider approximation with 1-dimensional piecewise
constants in maximum norm.

Given an interval /, denote by bisect(/) := {/1, I} the pair of intervals
generated by the subdivision of / in its midpoint.

Set N :=0, Mg :={[0,1]} and iterate (cf. Birman/Solomyak '67)
Q ty = maxcpne(l)
Q if ty =0, then STOP
@ pick some Iy € My with e(ly) = ty
Q@ Mpy1:= (Mpy\ {In}) Ubisect(/y)

@ increment N

This iterative feedback process can be recorded by a binary tree.
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Regularity for best convergence rate

Let

Apn := {s | s pw constant on mesh generated with < N — 1 bisections}
denote the counterpart of Sy and X y.
DeVore '87 shows that

Jnf v sl < MV v

where MV’ is the maximal function of v/ satisfying, cf. Bennett/Sharpley
'88,

1
IMV]| 1 < 00 = /0 V[ log(1 + V) < .
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Some comparison and a remark

The error decay N~! with pw constants is dictated by

uniform ‘ bisection ‘ ‘free’

lulcor = W'l e | (1M || | [[u'l| 2 = var(u)

Remember: On a computer, we have N < N with Npax finite but
growing with time ...

The above algorithm may not fully exploit the potential of Ay if
@ the local errors 'sum’ in /,, p < oo and
@ a single bisection does not reduce the error at least by a fixed fraction.

Tree approximation by Binev '16 provides a remedy by applying the
maximum strategy on modified, history-dependent indicators.
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Getting more general

@ Bisection generalizes to conforming shape regular simplicial
meshes; cf. Binev/Dahmen/DeVore '04, Stevenson '08.

@ For generalization to piecewise polynomials of (fixed) higher order,
see Chen/Xu, Binev/Dahmen/DeVore/Petrushev '02, Gaspoz/Morin
14, ...

Bisection appears to be a good compromise between flexibility and
algorithmic convenience.
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Global and local plan

© Mesh-adaptive FEMs
@ Setting
@ Convergence
@ Rate optimality

The real game: apply mesh adaptivity to the numerical solution of PDEs —
the main new issue is to deal with the global dependence in the
indicators.

We first fix a ‘model’ setting.
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Model problem and structure of algorithm

Considering the Poisson problem
—Au="finQcCR? u=0on 99,
let's keep the iterative feedback nature of the bisection algorithm.

Given an initial edge-to-edge triangulation 7p, set k := 0 and iterate
Q Uy :=solve(f, T)
Q {nk.7}7eT, = estimate(Uy, f)
© Ty = mark(Ty, {nk;7} re;)
Q Tiy1 = refine(Tx, Tx)

@ increment k
Note each step requires (at least) #7x operations.
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Step ‘solve’

Let's take linear finite elments. Given a triangulation 7T, set

S(T)={v:Q>R|WeC(Q), vg=0,T €T vy € P},

Then the Galerkin solution
Ui = solve(f, Tx) € S(Tx)

verifies

Vo € S(Th) /Qvuk-w= (F.0).

Note that this is defined for f € H71(Q).
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Step ‘estimate’ - extract information

We have that f <> u, where f — u is global, while u — f is local.

Let 7 be some refinement of 7y. Replacing f and u by the residual
Ry :=f + AUy and the error Uy — u, respectively, suggests that we
cannot expect better than the following.

Omitting f and Uy in the indicators, we have the global upper bound

1/2
|Ur — ulg == | V(Ur = u)ll 20 < Cu (} j TZT(T)2>
TeT

and, for any T € T, the local lower bound
Cun(T) < |Ur — uly 1y
where wr(T) is a T-neighborhood of T; cf. Kreuzer/Veeser '21.
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Step ‘mark’ - elaborate information

Let § €]0, 1], to be chosen later. Following Déorfler 96, choose

Tk = mark(Ti, {nk. 7} Te7)

such that a fixed fraction of the total estimator is collected with
(near) minimal cardinality:

ni;T 2 52 ni;T
T TqT«

Minimal cardinality is reached with the largest indicators; near minimal
cardinality can be reached with linear complexity by ‘binning’ ; cf.
Praetorius/Pfeiler '19.

Note that 7 is invariant upon multiplying the indicators with a fixed
positive factor.
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Step ‘refine’ - generate new mesh

Generate a new triangulation
Tis1 = refine(Tx, Tx)

by 2d bisection such that
@ each marked triangle T € 7A7< is at least ‘2.5 times' bisected,
@ shape regularity is uniformily bounded,

@ conformity is re-established.

Note that the last item entails additional refinements; to control their
number is a nontrivial task that we do not address here; cf.
Dahmen/Binev/DeVore '04, Stevenson '08.
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A simplifying (and practical) assumption

Let 7 be any refinement of 7p, z be a vertex of 7 and denote by wy(z)
the star around z in 7. Moreover, let 5F(z) the space spanned by the
hat-shaped bubbles associated with each triangle and interior edge of w,.

Suppose, for any such vertex z,

Il i1y z)) < Cs sup (o).
PEST(2),|#l (=1

This saturation assumption ensures that an essential part of f can be
seen on the ‘next’ local refinement level and so yields [|f||;-1(,,, ()
approximately computable.

It excludes dominating data oscillation and requires that data is
essentially resolved on 7.
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Local lower bounds for corrections

The saturation of data implies the following variant of the local lower
bound:

For any T € T such that each triangle in wy(T) has vertices of T in its
interior, we have the following lower bound for a correction:

Cunr(T) < Uy, — UTlwr (1)
with €L < (.

Note that this cannot hold when data, ie f, is not ‘resolved’ by 7.
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Local plan

© Mesh-adaptive FEMs

o Convergence

Following Dorfler '96 and Morin/Nochetto/Siebert '00, we first establish
linear convergence w.r.t. to the iteration number.
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Galerkin orthogonality and error monotonicity

Let 7. be a refinement of 7.

Then the Galerkin orthogonality
/ V(u—Up)-V(Ur — Ur) =0
Q

yields the (global) error monotonicty:

a=lu—Urlg—Ur — Url3
> |u— Urly.

lu— Uz,
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Linking error and correction

Thanks to the global upper bound, the marking strategy and the local
lower bounds for the correction, we derive

C?

2 2 2 2

Uk —ulg < CG D mer < 55’ > Tt
TeTk TeTk

2

N 62C2

|Uk — Ursal3,

Thus, the previous orthogonality gives the strict error reduction
C"2

Uk — ulg <41 —=62—5 |Uk—U|Q
CU
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Convergence - summary

Under the above assumptions and for any ¢ € (0, 1), we have

lu— Uylg < Ca¥

with

Note

@ The ratio % < 1 appears to be a quality measure.
® We didn't use minimal cardinality.

@ The proof through strict error reduction requires some regularity on f.
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Convergence - alternatives

Morin/Siebert/Veeser '08 and Siebert '11 present alternative approaches
that

@ cover inf-sup stable, conforming methods for well-posed problems and
more general marking strategies,

@ neither use nor conclude strict error reduction, but only plain
convergence.

For discontinuous Galerkin methods in the spirit of the alternatives, see
Kreuzer/Georgoulis '18.
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Local plan

© Mesh-adaptive FEMs

@ Rate optimality

Following Stevenson '07, we quantify the convergence speed w.r.t.
#DOFs.
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Rate optimality

Denote by T the class of all meshes that can be generated from 7; and,
for N € N, set

Av:=J S(T) with Twn:={T €T |#T —#To < N}.
TeTy

Let r > 0. We say that the presented algorithm is r-rate optimal
whenever its outputs Uy € Sy, Nk = #Tx — To, verify the following
implication:

inf |[u—slqg < CNT" = |u—Uklqg < C'CN"
seAn

Rate optimality is weaker than instance optimality.
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Upper bound for correction

Consider again a refinement 7* of 7 and denote by
Tr:=T\(TNT)
the triangles of 7 that are refined in 7*.
Then the following upper bound for the correction holds with C;; > Cy:

1/2

Ur. = Urlg < Cu | Y nr(T)?
TEeTr

In fact, the relevant residual norm is sup{(R, ¢) | ¢ € S(T*),|¢| < 1}.
and its test functions are "in S(7) on Urer.nr T".
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Error reduction and Dorfler strategy - the converse way

Let © €]0,1[ be a reduction factor. If

lu—Urlqg < plu—Urlg,

then the local lower bounds, orthogonality, and the previous upper bound
imply

Q=AY (TP < (1—p?)|u—Urly

TeT
<|u—Urfg—|u—Urlg=|Ur = Urlg < GG Y nr(T)?
TeTr
ie

2 2 2 . G 5 C
2 (T < > nr(T)? with 6, = =/1—p2€]0, =]

TeT TeTs Cu Cu

R
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Linking to approximability of u

Assume approximability with rate r > 0:

inf lu—slo < CN™".
S'eAN|U ‘Q >

Then there exists a partition 7, such that

inf |u—slg<plu—Urlg and #ESNSC(Mar)‘U—UT‘s;l/r'
s€S(Ty)

Let 7* be the minimal common refinement of 7, and 7. Then
HTh < #T* —#T <#T, < N < C(p,r)|u— Urlg"",

which limits the number of refined elements to achieve strict error
reduction in terms of actual error and approximation rate.
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Combing with Dorfler marking

Assuming

56]0,&,
Cu

we can choose p € ]0, 1] such that §,, = 6.

Consequently, the preceding arguments with 7 = 7T, and the minimal
cardinality in Dorfler marking limits the marked elements by

#T < #Tr < Clu— Uelg""
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lteration history

Let K € N an iteration number. Combining the last result with a result on
the re-establishment of conformity, |u — Uk|q < aX=*|u — Uk|q, we
finally obtain

K-1 K-1
Ne=Tk—To<CY #T<CY [u—Udg""
k=0 k=0

< N7 KRy — Uk |V < Clagr) [u — Uk Y
u— Uklg < CN;".
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Rate optimality - summary

Under the above assumptions and

CL
C[

U

e o,

the presented algorithm is rate optimal, ie, for any r > 0, we have

inf |[u—slqg < CNT" = |u—Uklq < C'CN"
seEAN
Note

@ Again, the ratlo < 1 appears as a quality measure.

@ The choice of the parameter 0 becomes delicate for a ‘bad’ estimator;
cf. Diening/Kreuzer.
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Rate optimality - extensions

@ Feischl '19 covers stationary Stokes problem with Taylor-Hood by
verifying generalized quasi-orthogonality

o Gantner/Haberl/Praetorius/Schimanko '21 proves rate optimality
w.r.t. to overall computational cost

e Haberl/Praetorius/Schimanko/Vohralik '21 addresses nonlinear
operators and algebraic solvers
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@ Approximation based on mesh adaptivity
@ Mesh adaptivity with piecewise constants
@ Equidistribution of local errors
@ A (self-)adaptive mesh construction

© Mesh-adaptive FEMs
@ Setting
@ Convergence
@ Rate optimality

Thank you for your attention!
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