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Goal

A posteriori estimates bound the error due to the discretization, the
approximate solution, the model etc. The influence of the mesh is
captured typically in the form

��

T∈T
indicatorT (disc sol|T , data|T )

2

�1/2

Our goal now:

Analyze the potential of the use of this splitting
to construct ‘optimal’ meshes.
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Global plan

1 Approximation based on mesh adaptivity

2 Mesh-adaptive FEMs

We first consider the simpler situation where the target function is
explicitly known to us, not only given implicitly by a PDE problem.

This is also relevant for approximating the data in PDE problem and for
coarsening in evolution problem.
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Local plan

1 Approximation based on mesh adaptivity
Mesh adaptivity with piecewise constants
Equidistribution of local errors
A (self-)adaptive mesh construction

Let’s start with the simplest situation I can think of.
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Piecewise constants on uniform/arbitrary 1d-meshes

Given a 1d mesh M : 0 = x0 < · · · < xN = 1, define

S(M) :=
�
s : [0, 1[ → R | s|[xi−1,xi [ is constant

�

and write MN for the uniform mesh with N intervals, ie xi = i/N.

Consider approximation with elements from

SN := S(MN) and ΣN :=
�

M S(M).

An element s in

SN is determined by N constants,

ΣN is determined by N constants and N − 1 breakpoints.
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Examples of linear and nonlinear approximation

SN is a linear space, while ΣN is not. In fact,

s1, s2 ∈ SN ,α ∈ R =⇒ αs1 ∈ SN and s1 + s2 ∈ SN ,

and

s ∈ ΣN , α ∈ R =⇒ αs ∈ ΣN ,

s1, s2 ∈ ΣN �=⇒ s1 + s2 ∈ ΣN .

However, ΣN is mildly nonlinear in the sense that

s1, s2 ∈ ΣN =⇒ s1 + s2 ∈ Σ2N .
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Global and local max norm errors

Given a fixed known v ∈ C 0[0, 1] and s ∈ S(M) piecewise constant, take

�v − s�L∞ := max
x∈[0,1[

|v(x)− s(x)|

as error notion. Given an interval I = [a, b] ⊂ [0, 1[, introduce the cell or
local error

e(I ) := min
c∈R

�v − c�L∞(I ) =
1
2

�
sup
I

v − inf
I
v

�

which satisfies

inf
I∈M

�v − s�L∞ = max
I∈M

e(I ),

I ⊆ I � =⇒ e(I ) ≤ e(I �), lim
|I �\I |→0

e(I �)− e(I ) = 0.
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Equidistribution of local errors

Let tol > 0 and denote by #M the number of cells in a mesh M.

We aim for a mesh M with

inf
s∈S(M)

�v − s�L∞ ≤ tol and #M minimal.

Construct ti by t0 := 0 and

ti+1 := max{t ∈ [ti , 1] | e[ti , t[ ≤ tol} whenever ti < 1,

which essentially equidistributes the local errors.

Then the mesh given by t0 < · · · < tN is such a optimal mesh.
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Power functions and their regularity

For ρ > 0, consider
vρ(x) := xρ

Then vρ ∈ C 0[0, 1] and

ρ ≥ 1 =⇒
��v �ρ

��
L∞

= ρ,

ρ ∈ ]0, 1[ =⇒ merely vρ ∈ C 0,ρ[0, 1]

��v �ρ
��
L1

:=

ˆ 1

0
|v �ρ| = 1.

Note that monotoncity of vρ yields

eρ(I ) = inf
c∈R

�v − c�L∞(I ) =
1
2

�
v(max I )− v(min I )

�
= 1

2

ˆ

I
|v �ρ|,

which may be considered a special case of the Bramble-Hilbert lemma
with a integrability shift.
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About convergence rates

The interval length N−1 leads to

inf
s∈SN

�vρ − s�∞ � 1
2

�
ρN−1, ρ ≥ 1,

N−ρ, ρ ∈ ]0, 1[,

while equilibrating with
��v �ρ

��
L1(ti−1,ti )

= N−1
��v �ρ

��
L1(0,1)

gives

inf
s∈ΣN

�vρ − s�L∞ = 1
2N

−1.

No improvement for ρ = 1, case without ‘local features’.

Thus, mesh adaptivity may improve

error ≤ CN−r

by reducing C or by enlarging r ; the latter typically more dramatic.
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Piecewise constants in the DeVore diagram

In general, for v ∈ C 0[0, 1],

inf
s∈SN

�v − s�∞ = O(N−1) ⇐⇒ v ∈ C 0,1[0, 1]

inf
s∈ΣN

�v − s�∞ = O(N−1) ⇐⇒ v ∈ BV [0, 1] (Kahane ’61)

Recall W r ,p(0, 1) ⊆ C 0[0, 1] =⇒ r ≥ 0 and r − 1
p ≥ 0.
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Local plan

1 Approximation based on mesh adaptivity
Mesh adaptivity with piecewise constants
Equidistribution of local errors
A (self-)adaptive mesh construction

Let’s see how far the idea of equidistributing the local errors goes . . .
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Abstract equidistribution

Suppose that, for any mesh T , its global error E (T ) has the splitting

E (T ) ≤ C1

��
T∈T e(T )p

�1/p
,

and allows for the following bound with shifted summability: for some
fixed q ∈ ]0, p[ and C2, there holds

��
T∈T e(T )q

�1/q ≤ C2.

If can construct a mesh T with equidistributed local errors,

∀T ∈ T e(T ) = t for some t > 0,

then tN1/q ≤ C2 and therefore

E (T ) ≤ C1tN
1/p ≤ C1C2N

1/p−1/q.
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Best error localizations in H1

Given a shape-regular triangulation T of Ω ⊆ Rd , set

S(T ) :=
�
s ∈ C 0(Ω̄ | s|∂Ω = 0, ∀T ∈ T s|T ∈ P�(T )

�
.

Then, for any v ∈ H1
0 (Ω), we have best error localization

inf
s∈S(T )

�∇(v − s)�2L2(Ω) ≤ C1

�

T∈T
inf

p∈P�(T )
�∇(v − p)�2L2(T ) ;

cf. Veeser ’16 and Aurada et al. ’13.
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Best error localizations - proof in 1d

Fix a cell I = [xi−1, xi ]. A local best approximation pi ∈ P�[xi−1, xi ] is
determined only up to a constant, which we may choose such that
pi (xi−1) = v(xi−1).

Moreover, exploiting its Galerkin orthogonality with q(x) = x yields

0 =

ˆ xi

xi−1

(v − pi )
�q� =

ˆ xi

xi−1

(v − pi )
� = (v − pi )(xi )

Thus, gluing these pi together yields globally continuous best
approximation and so even C1 = 1.
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Further best error localizations

There are further best error localizations for

the L2-norm and reaction-diffusion norm
(Tantardini/Verfürth/Veeser ’15),

the H−1-norm
(Blechta/Málek/Vohraĺık ’16, Tantardini/Verfürth/Veeser ’17),

other operators/elements
(Ciarlet/Vohraĺık ’17, Ern/Smears/Vohraĺık, . . . ).
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Generalized Bramble-Hilbert lemmas

If d = 2, the Sobolev embedding H1(Ω) ⊆ W 2,1(Ω) implies the
Bramble-Hilbert-like inequality

inf
p∈P�(T )

�∇(v − p)�L2(T ) ≤ C2 |v |W 2,1(T )

Note that, for Ω = B(0, 1) ⊂ R2, we have

|x |ρ ∈ H1 ⇐⇒ ρ > 0 ⇐⇒ |x |ρ ∈ W 2,p for some p > 1.

More generally, Veeser ’16 and Gaspoz/Morin ’14 show

inf
p∈P�(T )

�∇(v − p)�L2(T ) ≤ C �
2 inf
p̃∈P�−1(T )d

�∇v − p̃�L2(T )

≤ C2 |∇v |
Br
q

�
Lq(T )

�

with

r ≤ �+ 1, q > 0 and r − d

q
= 1− d

2
.
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H1-equilibration in DeVore diagram

Thus, equilibration of infp∈P�(T ) �∇(v − p)�L2(T ), T ∈ T , would lead to
the rate

N−(r−1)/d

if |∇v |
Br
q

�
Lq(Ω)

� < ∞. For 1d-splines and not only H1, cf. Petrushev ’88.

There is a Besov regularity theory for PDEs, starting with
Dahlke/DeVore ’97.
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Local plan

1 Approximation based on mesh adaptivity
Mesh adaptivity with piecewise constants
Equidistribution of local errors
A (self-)adaptive mesh construction

Apart from 1d, we haven’t constructed any meshes up to now.
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Bisection guided by maximum strategy

For simplicity, reconsider approximation with 1-dimensional piecewise
constants in maximum norm.

Given an interval I , denote by bisect(I ) := {I1, I2} the pair of intervals
generated by the subdivision of I in its midpoint.

Set N := 0, M0 := {[0, 1]} and iterate (cf. Birman/Solomyak ’67)

1 tN := maxI∈MN
e(I )

2 if tN = 0, then STOP

3 pick some IN ∈ MN with e(IN) = tN
4 MN+1 :=

�
MN \ {IN}

�
∪ bisect(IN)

5 increment N

This iterative feedback process can be recorded by a binary tree.
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Regularity for best convergence rate

Let

AN := {s | s pw constant on mesh generated with ≤ N − 1 bisections}

denote the counterpart of SN and ΣN .

DeVore ’87 shows that

inf
s∈AN

�v − s�L∞ ≤
��Mv �

��
L1
N−1

where Mv � is the maximal function of v � satisfying, cf. Bennett/Sharpley
’88,

��Mv �
��
L1

< ∞ ⇐⇒
ˆ 1

0
|v �| log(1 + |v �|) < ∞.
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Some comparison and a remark

The error decay N−1 with pw constants is dictated by

uniform bisection ‘free’

|u|C0,1 = �u��L∞ �Mu��L1 �u��L1 ≥ var(u)

Remember: On a computer, we have N ≤ Nmax with Nmax finite but
growing with time . . .

The above algorithm may not fully exploit the potential of AN if

the local errors ’sum’ in �p, p < ∞ and

a single bisection does not reduce the error at least by a fixed fraction.

Tree approximation by Binev ’16 provides a remedy by applying the
maximum strategy on modified, history-dependent indicators.
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Getting more general

Bisection generalizes to conforming shape regular simplicial
meshes; cf. Binev/Dahmen/DeVore ’04, Stevenson ’08.

For generalization to piecewise polynomials of (fixed) higher order,
see Chen/Xu, Binev/Dahmen/DeVore/Petrushev ’02, Gaspoz/Morin
’14, . . .

Bisection appears to be a good compromise between flexibility and
algorithmic convenience.
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Global and local plan

1 Approximation based on mesh adaptivity

2 Mesh-adaptive FEMs
Setting
Convergence
Rate optimality

The real game: apply mesh adaptivity to the numerical solution of PDEs –
the main new issue is to deal with the global dependence in the
indicators.

We first fix a ‘model’ setting.
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Model problem and structure of algorithm

Considering the Poisson problem

−Δu = f in Ω ⊂ R2, u = 0 on ∂Ω,

let’s keep the iterative feedback nature of the bisection algorithm.

Given an initial edge-to-edge triangulation T0, set k := 0 and iterate

1 Uk := solve(f , Tk)
2 {ηk;T}T∈Tk := estimate(Uk , f )

3 T̂k := mark(Tk , {ηk;T}T∈Tk )
4 Tk+1 := refine(Tk , T̂k)
5 increment k

Note each step requires (at least) #Tk operations.
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Step ‘solve’

Let’s take linear finite elments. Given a triangulation T , set

S(T ) := {v : Ω → R | ∀v ∈ C 0(Ω), v|Ω = 0,T ∈ T v|T ∈ P1},

Then the Galerkin solution

Uk = solve(f , Tk) ∈ S(Tk)

verifies

∀ϕ ∈ S(Tk)
ˆ

Ω
∇Uk ·∇ϕ = �f ,ϕ� .

Note that this is defined for f ∈ H−1(Ω).
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Step ‘estimate’ - extract information

We have that f ↔ u, where f → u is global, while u → f is local.

Let T be some refinement of T0. Replacing f and u by the residual
RT := f +ΔUT and the error UT − u, respectively, suggests that we
cannot expect better than the following.

Omitting f and UT in the indicators, we have the global upper bound

|UT − u|Ω := �∇(UT − u)�L2(Ω) ≤ CU

��

T∈T
ηT (T )2

�1/2

and, for any T ∈ T , the local lower bound

CLηT (T ) ≤ |UT − u|ωT (T )

where ωT (T ) is a T -neighborhood of T ; cf. Kreuzer/Veeser ’21.
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Step ‘mark’ - elaborate information

Let δ ∈ ]0, 1[, to be chosen later. Following Dörfler ’96, choose

T̂k = mark(Tk , {ηk;T}T∈Tk )

such that a fixed fraction of the total estimator is collected with
(near) minimal cardinality:

�

T∈T̂k

η2k;T ≥ δ2
�

T∈Tk
η2k;T

Minimal cardinality is reached with the largest indicators; near minimal
cardinality can be reached with linear complexity by ‘binning’ ; cf.
Praetorius/Pfeiler ’19.

Note that T̂k is invariant upon multiplying the indicators with a fixed
positive factor.
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Step ‘refine’ - generate new mesh

Generate a new triangulation

Tk+1 = refine(Tk , T̂k)

by 2d bisection such that

each marked triangle T ∈ T̂k is at least ‘2.5 times’ bisected,

shape regularity is uniformily bounded,

conformity is re-established.

Note that the last item entails additional refinements; to control their
number is a nontrivial task that we do not address here; cf.
Dahmen/Binev/DeVore ’04, Stevenson ’08.
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A simplifying (and practical) assumption

Let T be any refinement of T0, z be a vertex of T and denote by ωT (z)
the star around z in T . Moreover, let S+

T (z) the space spanned by the
hat-shaped bubbles associated with each triangle and interior edge of ωz .

Suppose, for any such vertex z ,

�f �H−1(ωT (z)) ≤ CS sup
ϕ∈S+

T (z),|ϕ|ωT (z)=1

�f ,ϕ� .

This saturation assumption ensures that an essential part of f can be
seen on the ‘next’ local refinement level and so yields �f �H−1(ωT (z))

approximately computable.

It excludes dominating data oscillation and requires that data is
essentially resolved on T0.
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Local lower bounds for corrections

The saturation of data implies the following variant of the local lower
bound:

For any T ∈ T such that each triangle in ωT (T ) has vertices of T∗ in its
interior, we have the following lower bound for a correction:

C̃LηT (T ) ≤ |UT∗ − UT |ωT (T )

with C̃L ≤ CL.

Note that this cannot hold when data, ie f , is not ‘resolved’ by T∗.
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Local plan

2 Mesh-adaptive FEMs
Setting
Convergence
Rate optimality

Following Dörfler ’96 and Morin/Nochetto/Siebert ’00, we first establish
linear convergence w.r.t. to the iteration number.
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Galerkin orthogonality and error monotonicity

Let T∗ be a refinement of T .

Then the Galerkin orthogonality

ˆ

Ω
∇(u − UT∗) ·∇(UT − UT∗) = 0

yields the (global) error monotonicty:

|u − UT∗ |2Ω = |u − UT |2Ω − |UT − UT∗ |2Ω
≥ |u − UT |2Ω .
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Linking error and correction

Thanks to the global upper bound, the marking strategy and the local
lower bounds for the correction, we derive

|Uk − u|2Ω ≤ C 2
U

�

T∈Tk
η2k;T ≤ C 2

U

δ2

�

T∈T̂k

η2k;T

≤ C 2
U

δ2C̃ 2
L

|Uk − Uk+1|2Ω

Thus, the previous orthogonality gives the strict error reduction

|Uk+1 − u|Ω ≤
�
1− δ2

C̃ 2
L

C 2
U

|Uk − u|Ω .
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Convergence - summary

Under the above assumptions and for any δ ∈ (0, 1), we have

|u − Uk |Ω ≤ Cαk

with

α =

�
1− δ2

C̃ 2
L

C 2
U

.

Note

The ratio C̃L
CU

≤ 1 appears to be a quality measure.

We didn’t use minimal cardinality.

The proof through strict error reduction requires some regularity on f .
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Convergence - alternatives

Morin/Siebert/Veeser ’08 and Siebert ’11 present alternative approaches
that

cover inf-sup stable, conforming methods for well-posed problems and
more general marking strategies,

neither use nor conclude strict error reduction, but only plain
convergence.

For discontinuous Galerkin methods in the spirit of the alternatives, see
Kreuzer/Georgoulis ’18.
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Local plan

2 Mesh-adaptive FEMs
Setting
Convergence
Rate optimality

Following Stevenson ’07, we quantify the convergence speed w.r.t.
#DOFs.
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Rate optimality

Denote by T the class of all meshes that can be generated from T0 and,
for N ∈ N, set

AN :=
�

T ∈TN

S(T ) with TN := {T ∈ T | #T −#T0 ≤ N}.

Let r > 0. We say that the presented algorithm is r-rate optimal
whenever its outputs Uk ∈ SNk

, Nk = #Tk − T0, verify the following
implication:

inf
s∈AN

|u − s|Ω ≤ CN−r =⇒ |u − Uk |Ω ≤ C �CN−r
k

Rate optimality is weaker than instance optimality.
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Upper bound for correction

Consider again a refinement T ∗ of T and denote by

TR := T \ (T ∩ T∗)

the triangles of T that are refined in T ∗.

Then the following upper bound for the correction holds with C̃U ≥ CU :

|UT∗ − UT |Ω ≤ C̃U


 �

T∈TR
ηT (T )2




1/2

.

In fact, the relevant residual norm is sup{�R ,ϕ� | ϕ ∈ S(T ∗), |ϕ| ≤ 1}.
and its test functions are ”in S(T ) on ∪T∈T∗∩T T”.
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Error reduction and Dörfler strategy - the converse way

Let µ ∈ ]0, 1[ be a reduction factor. If

|u − UT∗ |Ω ≤ µ |u − UT |Ω ,

then the local lower bounds, orthogonality, and the previous upper bound
imply

(1− µ2)C 2
L

�

T∈T
ηT (T )2 ≤ (1− µ2) |u − UT |2Ω

≤ |u − UT |2Ω − |u − UT∗ |2Ω = |UT∗ − UT |2Ω ≤ C̃ 2
U

�

T∈TR
ηT (T )2

ie

δ2µ
�

T∈T
ηT (T )2 ≤

�

T∈TR
ηT (T )2 with δµ =

CL

C̃U

�
1− µ2 ∈ ]0,

CL

C̃U

[.
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Linking to approximability of u

Assume approximability with rate r > 0:

inf
s∈AN

|u − s|Ω ≤ CN−r .

Then there exists a partition Tµ such that

inf
s∈S(Tµ)

|u − s|Ω ≤ µ |u − UT |Ω and #Tµ ≤ N ≤ C (µ, r) |u − UT |−1/r
Ω .

Let T ∗ be the minimal common refinement of Tµ and T . Then

#TR ≤ #T ∗ −#T ≤ #Tµ ≤ N ≤ C (µ, r) |u − UT |−1/r
Ω ,

which limits the number of refined elements to achieve strict error
reduction in terms of actual error and approximation rate.
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Combing with Dörfler marking

Assuming

δ ∈ ]0,
CL

C̃U

[,

we can choose µ ∈ ]0, 1[ such that δµ = δ.

Consequently, the preceding arguments with T = Tk and the minimal
cardinality in Dörfler marking limits the marked elements by

#T̂k ≤ #TR ≤ C |u − Uk |−1/r
Ω .
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Iteration history

Let K ∈ N an iteration number. Combining the last result with a result on
the re-establishment of conformity, |u − UK |Ω < αK−k |u − Uk |Ω, we
finally obtain

NK = TK − T0 ≤ C
K−1�

k=0

#T̂k ≤ C
K−1�

k=0

|u − Uk |−1/r
Ω

≤
K−1�

k=0

α(K−k)/r |u − UK |−1/r
Ω ≤ C (α, r) |u − UK |−1/r

ie
|u − UK |Ω ≤ CN−r

K .
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Rate optimality - summary

Under the above assumptions and

δ ∈ ]0,
CL

C̃U

[,

the presented algorithm is rate optimal, ie, for any r > 0, we have

inf
s∈AN

|u − s|Ω ≤ CN−r =⇒ |u − Uk |Ω ≤ C �CN−r
k

Note

Again, the ratio CL

C̃U
≤ 1 appears as a quality measure.

The choice of the parameter δ becomes delicate for a ‘bad’ estimator;
cf. Diening/Kreuzer.
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Rate optimality - extensions

Feischl ’19 covers stationary Stokes problem with Taylor-Hood by
verifying generalized quasi-orthogonality

Gantner/Haberl/Praetorius/Schimanko ’21 proves rate optimality
w.r.t. to overall computational cost

Haberl/Praetorius/Schimanko/Vohraĺık ’21 addresses nonlinear
operators and algebraic solvers

. . .
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Questions?

1 Approximation based on mesh adaptivity
Mesh adaptivity with piecewise constants
Equidistribution of local errors
A (self-)adaptive mesh construction

2 Mesh-adaptive FEMs
Setting
Convergence
Rate optimality

Thank you for your attention!

Andreas Veeser Mesh adaptivity 48 / 48


	Approximation based on mesh adaptivity
	Mesh adaptivity with piecewise constants
	Equidistribution of local errors
	A (self-)adaptive mesh construction

	Mesh-adaptive FEMs
	Setting
	Convergence
	Rate optimality


