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Computer tutorial N°3

Goal-oriented error estimation and mesh adaptivity
Goal functional, primal problem, adjoint problem, goal-oriented a posteriori error
estimate, mesh adaptivity

We consider a similar setup as in tutorials N°1 and N°2, where Q C R? is an open,
bounded, and connected set with a polygonal and Lipschitz boundary 92 = I'p U I'y.
In the first part of the exercice, €2 is the unit square 2 =|0, 1[x]0, 1[, see Figure 1. The
prescribed loading is as follows: Neumann boundary conditions with unit normal flux are
applied on the top side I'y C 9 of the square; homogeneous Dirichlet conditions are
applied on the complementary part I'p C 9€2 made of the 3 other sides; there is no source
term in 2.
The model problem thus reads: find « : 2 — R such that

—Au=0 in €, (la)

u=0 on I'p, (1b)

—Vung=-1 only. (1c)

The quantity o := —Vu is the flux associated to u. The problem has an analytical

(smooth) solution, given by

o=

—0u/dy = -1
I'n
u=20 —Au=0 uw=20
y‘ .wQ
. I'p
r u=40

Figure 1: Reference problem and plot of the exact solution

We define the two quantities of interest:

1 1 ou
Ql(lb) = m/&@ u and QQ(U,) = —H - %, (3)

where () corresponds to the average of w in the subregion wg := (0.45,0.55) x (0.2,0.3),
and @), is the average of the normal flux on the right-hand edge I'g at x = 1. The error
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estimation by flux equilibration developed in the previous computer tutorials N°1 and
N°2 will be reused in the following.
Denoting V' := {v € H'(Q) : v|p, = 0}, the primal problem reads as: find u € V
such that for all v € V,
(Vu, Vo) = (v, 1)py. (4)

Let 7, be a triangulation of 2. The finite element method seeks for an approximate
solution uy to the exact solution w in the discrete piecewise polynomial subspace of V'

Vép = {Ug eV, Ug|K € PP(K) VK € 72} = ’Pp(’n) nv, (5)
where the polynomial degree p > 1; u, € V)/ is such that for all v, € V/,
(VU@, va) = <Ug, ]‘>FN' (6)

Above, P,(K) stands for the space of polynomials of total degree at most ¢ > 0 on the
mesh element K € 7, and P,(7;) denotes piecewise g-degree polynomials with respect to
the mesh 7,.

Exercise 1. (Analysis of the error)

1. Generate a triangular mesh 7y of 2 with int nds = 10 subdivisions in each di-
rection (similar mesh as in tutorial N°1). For the quantity of interest 1, it may
be convenient to respect the subregion wg, which can in FreeFem++4- be achieved
using the command buildmesh. For ()5, the meshes created by the command
Th = square(nds,nds) appear less sensitive to the approximation of the exact
solution u described in item 3 below. Successive meshes will in this exercise be
obtained using the command Th=splitmesh(Th,2) for uniform mesh refinement.

2. Perform the assembly of problem (6), in order to compute the approximate solution
ug in V), starting with ¢ = 0. We first consider Pcont P1.

3. Obtain an approximation of the exact solution u given by (2) together with its
derivatives by relying on int uExpres = 50 first terms from the development (2).
More precisely, we interpolate u in a finer space than V}”, using a) a refined mesh of
T, obtained by int noverkill = 2 uniform refinements of 7, and b) using a higher
polynomial degree Pcontpp P2.

4. Plot the exact solution u and its finite element approximation u,.

5. Using the sequence 7, of uniformly refined meshes, plot the convergence of the
global discretization error in the energy norm ||V(u — uy)||, as well as that of the
error |Q;(u) — Q;(ue)| in both quantities of interest @); and )3. Comment on the
obtained results.

Answer 1. (Analysis of the error)

The answers to items 1-3 are contained in the script TP3.edp. We now illustrate answers
to questions 4-5.

4. One should obtain the results as in Figure 2.
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Figure 2: Exact solution u (left) and approximate solution w, (right, p = 1)
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Figure 3: Energy error ||V (u — uy)|| with respect to the DoF's, p =1

5. One should obtain the results as in Figures 3 and 4. In a smooth case, the en-
ergy error converges as O(DoFs)™?/2, whereas the error in the goal functional as
O(DoFs)?. As the solution u of (2) is smooth, we indeed observe the O(DoFs)~!/2
rate for the energy error, since we illustrate here the polynomial degree p = 1.
As for the goal functional @); from (3), the convergence rate is indeed doubled to
O(DoFs)~!. This is, however, not the case for @Q», which is connected with its
non-volumetric nature: we only have O(DoFs)~%/2 rate for Q.

Exercise 2. (Goal-oriented error estimation)

For both j € {1,2}, we would be tempted to define the adjoint problems as: find @ € V
such that for all v € V,

(Va, Vo) = Q;(v). (7)
This is perfectly fine for the volumetric quantity of interest (1 from (3), where the strong
form of the problem reads: find @ : 2 — R such that

~Ai=f  inq, (8a)
u=0 on I'p, (8b)
—Ving=0 on I'y (8¢)
with the source term
f = L1
wol ?

only nonzero in the subregion wg.
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Figure 4: Error in the quantity of interest |Q;(u) — Q;(u,)| in function of the DoFs, p =1
(left for @y, right for @s)

On the other hand, for the quantity of interest () from (3) of surface nature, Qo(v)
is not even defined for v € V' (indeed, the trace of % on I'r does not necessarily exist).
In this case, actually, proceeding as in, e.g., [1], the correct form of the adjoint problems
reads: find @ € H'(Q) such that @|r, = @p and such that for all v € V|

(Vii, Vo) = 0. (9)

The strong form of (9) is then: find @ : € — R such that

—Au=0 in €2, (10a)

u=1dup onIp, (10b)

—Ving =0 on I'y. (10c)

Here up is the “extractor function” which needs to take the value H—‘LRl = 1on I'g and

should “vanish” on the rest of I'p. In order to correctly use it in (10b), we, however,
need it in the space H'/?(I'p), i.e., it has to be a trace of a function from H'(2). This
means that we actually cannot set @p to zero in the rest of the Dirichlet boundary I'p. In
our problem, where, on the bottom side of the square y = 0, the exact solution w is zero
and also its gradient is small, the value of up on y = 0 actually does not count much.
Consequently, we set iup = x on the bottom side y = 0 and up = 0 on the left side x =0
(this is done in the script below VthP1 ValDir). As usual, we also introduce the adjoint
flux o := —Vua.

1. Perform the assembly of problem (7) for @; and (9) for Q)s, in order to compute
approximate solutions u, with FEM and the same initial mesh as for the primal
problem, and plot them. What is the physical representation of the adjoint loading?

2. Construct the equilibrated fluxes: o, for the primal problem and &, for the two
adjoint problems. Attention, for the original (primal) problem (1), we now have an
inhomogeneous Neumann boundary condition imposed on I'y, so that the boundary
conditions of the patch mixed finite element minimizations need to be appropriately
adjusted for boundary vertices lying at I'y.

3. Considering again the same meshes for primal and adjoint problems, compute the
following basic error estimate for the first quantity of interest Q;:

|Q1(u) = Qu(ue)| = [(V(u = w), V(i = 1)) < ngr = nee, (11)
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where 7, and 7, are the equilibrated fluxes estimators for primal and adjoint prob-
lems,

IV(u=ugll < o= lloe+ Vul| and V(@ — )| <7 = |60+ Vi (12)

We remark that there are no data oscillation estimators here. For the second quan-
tity of interest (), the situation is a bit more involved. Following again [1], equa-
tion (4.14) (take si = u! = uy), we, however, have (after integration by parts)

|Q2(u) — Q2(ur)| < nar = nefle + [(Vueng, ip)r, — (oeng, tryl. (13)
Note there are two supplementary boundary terms in comparison with (11).

4. Analyze the evolution of the goal estimate 7q; with respect to the exact goal error
|Q;(uw) — Q;(ug)], j = 1,2, for the sequence of uniformly refined meshes performed
in Exercice 1. In particular, plot the effectivity indices given by

o)
Q) — @ (an)]” (1)

as well as the effectivity indices related to the primal and dual energy estimates (12)

ull Te

_—— and _——. (15)
[V (u = ) IV (@ — a)|
5. For both cases j € {1,2}, implement the improved bound
1 -
1Q)(u) = Qj(ue) = Col = e + (Ve + 0¢) ng, ip)ry |, (16)
where Cy := %(0'5 + Vuy, 60 + Vi) is a computable correction term and where

up = 0 for Q1 (see [1, Theorem 4.8] for the boundary term appearing for Q3). This
bound can be rewritten as

impr 1 ~ ~
Qi) = Qs{ue)| < n" 1= max |Co + 0(Smeiie + [{(Vue + 00)ma, i)y )| (17)

6. In a similar way as in question 4. of Exercise 2, analyze the evolution of the new
goal estimate with respect to the exact goal error.

Answer 2. (Goal-oriented error estimation)

The answers to items 3 and 5 are contained in the script TP3.edp. As for the other
questions:

1. One should obtain the results as in Figure 5. We note a strong localization of the
dual approximation @, around the subregion wq for the quantity of interest ¢);. For
()2, it follows from our choice of the extractor function @p in (9)—(10) that

The physical representation of the adjoint loading is a volumetric source term with
value 1/|wg| in wg for @1 and imposition of the Dirichlet boundary condition equal
to the extractor function ap with value 1/|T'g| on I'g.

>
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Figure 5: Approximate solution @, of the adjoint problem, p = 1 (left for @); and right
for Q)

2. The formula is still

o= Z oy, (19a)

acV,

where
a

O'K = arg we’Rj;’ (%g}{o(div,wa) ”Zbavu{ + WHia- (19b)

Vevp=IL, (f9p*—Vu,-Vip®)
The space Hy(div,w,) for vertices a inside the computational domain €2 is the same
as in tutorial N°1, i.e., the subspace of all functions from H (div,w,) whose normal
trace vanishes on dw,. For a vertex a on the boundary of 2, we request 1) the
normal trace to vanish on the part of dw, where ¥® is zero (typically the part of
Owg not contained in 992); 2) the normal trace to equal to —9® on I'x N dw,. Note
that after summing in (19a), by virtue of the partition of unity ., ¥* = 1, the
normal trace of the equilibrated flux o, on I'y is indeed equal to —1, in accordance
with (1c).

4. Figure 6 shows the evolution of the goal estimates 7 of (11) or (13) in comparison
with the exact goal errors |Q);(u) — Q;(ue)|. More specifically, we plot the effectivity
indices given by (14) for both j = 1 and j = 2. We observe that they are perfectly
close to the optimal value of one for (5 but rather increased for ();. The inspection of
the primal and dual energy effectivity indices of (15) turns very much illuminating
here. For the former one, in the case of ()1, both are excellent, as witnessed in
Figure 7. The reason why the bound (11) can be imprecise is a cornerstone of
estimates in quantities of interest: both V(u — uy) and V(@ — 1,) can be nonzero
vectors, but their scalar product can be (close to) zero, which harms the Cauchy—
Schwarz bound in (11). In the case of Qs, it follows from (18) that ||V (@ — ue)|| =
¢ = 0, so that we only see a consequence of rounding errors in the right part of
Figure 8 (which explains the values below one), and only the two supplementary
boundary terms in (13) form the estimate 7q;.

6. With the improved bound as defined by (17), we obtain the results of Figure 9. For
(@1, the effectivity indices are improved roughly by a factor of 2, whereas there is
not much to improve for @)s.
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Figure 6: Quantity of interest effectivity indices (14), p = 1 (left for @)1 and right for @)
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Figure 7: Energy error effectivity indices (15) for the primal (left) and dual (right) prob-
lems, p =1 and ()4

Exercise 3. (Mesh adaptation)

1. From the improved error estimate (17), in the case of @)y, define the local error

contributions as:

| o
|Q1(u) — Qi (ue)] < mey”™ = max Z Ci + By /I;Tg( (20a)

KeT,

where for all K € T;, CF is the local contribution to Cy, i.e.
k._ 1 ~ ~
Cp = 5(0'4 + Vuy, 60+ Vi), (20b)

and )
& = 5(775 My + i) (20c)

Adapt the mesh following these elementwise error estimators. Please report all the
distribution of £, CF, the primal and dual energy errors |V (u — u)||x, ||V(@ —
)| i, the primal and dual energy estimators ||oy + Vuy||k, |6 + V| k, and the
sequence of refined meshes. Compare the results to those of uniform mesh refinement
of Exercises 1 and 2.

Answer 3. (Mesh adaptation)

The answer to item 1 is contained in the script TP3. edp.
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Figure 9: Effectivity indices given by the ratio ng" /|Q;(u) — Q;(ue)| of the improved
goal error estimate over the exact goal error, see (17), p = 1 (left for ()1 and right for Q2)

2. The results are given in Figures 10-14. We see a good prediction of the localization
of both the primal and dual energy errors. Then, refinement based on the combined
estimator &x adjusts the meshes towards all the problematic areas — the two upper
corners and the vicinity of wg. Figure 14, however, shows that the evolution of the
quantity of interest error |1 (u) — Q1 (u¢)| with respect to the number of DoF's, with
mesh adaptation, does not improve considerably over uniform meshes. The reason
is that the best-possible error decay has already been achieved with uniform mesh
refinement, see Figure 4. The effectivity indices, though, improve well in comparison
with uniform mesh refinement, see Figure 9, left.
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Figure 10: Primal energy errors ||V (u — uy)||x (left) and primal energy estimators |loy +
Vugl|g (right), p =1, @
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Figure 11: Dual energy errors || V(@ —ay)|| x (left) and dual energy estimators |6+ V|| x
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Figure 12: The correction estimators CX from (20b) (left) and the quantity of interest
estimators {x from (20c) (right), p =1, Q1
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Figure 14: The quantity of interest errors |@Q1(u) — Q1 (u¢)| with respect to the DoF's (left)
and the improved goal effectivity indices (17) (right), mesh adaptation, p =1, @y
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Exercise 4. (Alternative strategy for adaptivity)

One may think of a strategy where the mesh for the adjoint problem alone is refined,
following the estimator |6, + Vi, ||k (this might be expected to happen in the vicinity of
the adjoint loading where the changes in the local gradients are high), while keeping the
mesh of the primal problem unchanged. Denoting #; the associated adjoint finite element
approximation and o; the corresponding equilibrated flux, the a posteriori error bound
now reads, for ()1,

|Q1(u) — Qu(ue)| < nar == 1eg- (21)
Taking Cy := 3(o¢ + Vue, 67+ Vig) and 7; := |67 + Vg, we also have
[
|Q1(u) — Q1(ue) — Cff < PRl

and consequently
Q1) — Qiur)| < i = max| Gy + | (22)
= QLo 2 '
1. For a sequence of locally adapted meshes when solving the adjoint problem but a

fixed mesh for the primal problem, analyze the evolution of the goal estimate with
respect to the exact goal error, and plot effectivity indices.

Answer 4. (Alternative strategy for adaptivity)

1. Setting bool MeshRefAdjoint = true allows to perform the simulations and Fig-
ure 15 shows the results. Since the primal mesh 7y does not change, [Q1(u)—Q1(u/)],
as well as ||oy + Vuy|| (for £ = 0), are constant. The quality of the dual error es-
timate ||V (a — uy)|| < 77 := [|67 + Vi, in turn, improves. Thus the effectivity

indices for the quantity of interest improve.
1 L 1 L
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100Gy, 100
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Figure 15: Quantity of interest effectivity indices given by the ratio nqi/|Q1(u) — Q1(ue)|
from (21) (left) and ng;™ /@1 (u) — Q1(ue)| from (22) (right), p =1, Qs
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Exercise 5. (Goal-oriented error estimation near singularities)

We now consider a domain with a square hole of size 0.2 x 0.2 centered at point (0.5, 0.5),
see Figure 16. Consequently, the solutions will exhibit local singularities. The same
boundary conditions as in the previous example are applied on the external boundary,
while a free edge condition —Vu-ng = 0 is considered on the border I's of the hole.

1. Perform the same analysis as before, considering as the quantity of interests again
1 1 ou
@)= [ Quwy= - [ 2

|WQ| wQ ’FR| I'r a‘r

in the first case, the subregion wg := (0.45,0.55) x (0.2,0.3) can be potentially
moved closer to the singularity. For this example, a reference solution needs to be
computed from an overkill mesh.

—u/dy = —1
I'n

u=20 ke u =10

I'p

r u=20

Figure 16: New reference problem

Answer 5. (Goal-oriented error estimation near singularities)

The corresponding code is contained in the script TP3.edp and evoked using the setting
bool hole = true. We now present the answers to Exercises 1-4.

Exercise 1: Analysis of the error

4. Figure 17 shows the exact solution u and its finite element approximation wu, on the
new domain with the hole.

5. Figure 18 depicts the convergence of the primal energy error ||V(u — wy)||. The
errors in the quantities of interest |Q);(u) — Q;(ue)| are then reported in Figure 19.
We obtain the rate 0.43 for the primal energy error and 0.67 for the error in the (),
quantity of interest. For the ()5 quantity of interest, the rate appears to be bigger
than 1 here; it seems that a rather precise approximation of the unknown exact
solution u is necessary (we take noverkill = 2 and Pcontpp P4).

Exercise 2: Goal-oriented error estimation

1. One should obtain the results of Figure 20.

4. Figure 21 shows the quantity of interest effectivity indices (14). The values slightly
below 1 for ()5 seem to originate in a still not enough precise approximation of the
unknown exact solution u. The energy error effectivity indices reported in Figures 22
and 23 seem, in turn, excellent.

6. With the improved bound as defined by (17), we obtain the results of Figure 24.
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Figure 18: Energy error ||V(u — ug)|| with respect to the DoF's, p = 1, domain with hole
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Figure 19: Error in the quantity of interest |Q);(u) —@Q;(u,)| in function of the DoFs, p =1
(left for @y, right for ()3), domain with hole of Figure 16
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Figure 20: Approximate solution @, of the adjoint problem, p = 1 (left for ¢); and right
for ()2), domain with hole of Figure 16
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Figure 21: Quantity of interest effectivity indices (14), p = 1 (left for @ and right for

()2), domain with hole of Figure 16
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Figure 22: Energy error effectivity indices (15) for the primal (left) and dual (right)
problems, p = 1 and @)1, domain with hole of Figure 16
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Figure 23: Energy error effectivity indices (15) for the primal (left) and dual (right)
problems; p = 1 and ()5, domain with hole of Figure 16
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Figure 24: Effectivity indices given by the ratio fr]grllpr /1Qj(u) — Q;(uyg)| of the improved
goal error estimate over the exact goal error, see (17), p = 1 (left for ; and right for Q2),
domain with hole of Figure 16

15



Exercise 3: Mesh adaptation

2. The results are given in Figures 25-29. We again observe a good prediction of
the localization of both the primal and dual energy errors. In comparison with
Exercise 3, four strong singularities appear around the four re-entrant corners of
the hole. Then, refinement based on the combined estimator {x adjusts the meshes
towards all the problematic areas. In Figure 29, we see that the evolution of the
quantity of interest error |Qy(u) — Q1 (u¢)| with respect to the number of DoFs, with
mesh adaptation, is now significantly improved over uniform meshes, approaching
the optimal rate of 1.

primal energy errors. primal energy estimators

o
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Figure 25: Primal energy errors ||V (u — uy)||x (left) and primal energy estimators |loy +
Vgl x (right), p = 1, @1, domain with hole of Figure 16
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Figure 26: Dual energy errors ||V (a—ay)| & (left) and dual energy estimators |6+ V||
(right), p = 1, @1, domain with hole of Figure 16
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Figure 27: The correction estimators C from (20b) (left) and the quantity of interest
estimators {x from (20c) (right), p = 1, @1, domain with hole of Figure 16
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Figure 28: The first (left) and fourth (right) adapted mesh, p = 1, @1, domain with hole
of Figure 16
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Figure 29: The quantity of interest errors |Q;(u) — Q1(ue)| with respect to the DoF's (left)
and the improved goal effectivity indices (17) (right), mesh adaptation, p = 1, @, domain
with hole of Figure 16
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