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Computer tutorial N◦3

Goal-oriented error estimation and mesh adaptivity
Goal functional, primal problem, adjoint problem, goal-oriented a posteriori error

estimate, mesh adaptivity

We consider a similar setup as in tutorials N◦1 and N◦2, where Ω ⊂ R2 is an open,
bounded, and connected set with a polygonal and Lipschitz boundary ∂Ω = ΓD ∪ ΓN.
In the first part of the exercice, Ω is the unit square Ω =]0, 1[×]0, 1[, see Figure 1. The
prescribed loading is as follows: Neumann boundary conditions with unit normal flux are
applied on the top side ΓN ⊂ ∂Ω of the square; homogeneous Dirichlet conditions are
applied on the complementary part ΓD ⊂ ∂Ω made of the 3 other sides; there is no source
term in Ω.

The model problem thus reads: find u : Ω→ R such that

−∆u = 0 in Ω, (1a)

u = 0 on ΓD, (1b)

−∇u·nΩ = −1 on ΓN. (1c)

The quantity σ := −∇u is the flux associated to u. The problem has an analytical
(smooth) solution, given by

u(x, y) = 2
∞∑
k=1

(1− (−1)k)
sin(kπx) sinh(kπy)

(kπ)2 cosh(kπ)
. (2)

Figure 1: Reference problem and plot of the exact solution

We define the two quantities of interest:

Q1(u) :=
1

|ωQ|

∫
ωQ

u and Q2(u) := − 1

|ΓR|

∫
ΓR

∂u

∂x
, (3)

where Q1 corresponds to the average of u in the subregion ωQ := (0.45, 0.55)× (0.2, 0.3),
and Q2 is the average of the normal flux on the right-hand edge ΓR at x = 1. The error
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estimation by flux equilibration developed in the previous computer tutorials N◦1 and
N◦2 will be reused in the following.

Denoting V := {v ∈ H1(Ω) : v|ΓD
= 0}, the primal problem reads as: find u ∈ V

such that for all v ∈ V ,

(∇u,∇v) = 〈v, 1〉ΓN
. (4)

Let T` be a triangulation of Ω. The finite element method seeks for an approximate
solution u` to the exact solution u in the discrete piecewise polynomial subspace of V

V p
` := {v` ∈ V, v`|K ∈ Pp(K) ∀K ∈ T`} = Pp(T`) ∩ V, (5)

where the polynomial degree p ≥ 1; u` ∈ V p
` is such that for all v` ∈ V p

` ,

(∇u`,∇v`) = 〈v`, 1〉ΓN
. (6)

Above, Pq(K) stands for the space of polynomials of total degree at most q ≥ 0 on the
mesh element K ∈ T` and Pq(T`) denotes piecewise q-degree polynomials with respect to
the mesh T`.

Exercise 1. (Analysis of the error)

1. Generate a triangular mesh T0 of Ω with int nds = 10 subdivisions in each di-
rection (similar mesh as in tutorial N◦1). For the quantity of interest Q1, it may
be convenient to respect the subregion ωQ, which can in FreeFem++ be achieved
using the command buildmesh. For Q2, the meshes created by the command
Th = square(nds,nds) appear less sensitive to the approximation of the exact
solution u described in item 3 below. Successive meshes will in this exercise be
obtained using the command Th=splitmesh(Th,2) for uniform mesh refinement.

2. Perform the assembly of problem (6), in order to compute the approximate solution
u` in V p

` , starting with ` = 0. We first consider Pcont P1.

3. Obtain an approximation of the exact solution u given by (2) together with its
derivatives by relying on int uExpres = 50 first terms from the development (2).
More precisely, we interpolate u in a finer space than V p

` , using a) a refined mesh of
T` obtained by int noverkill = 2 uniform refinements of T` and b) using a higher
polynomial degree Pcontpp P2.

4. Plot the exact solution u and its finite element approximation u`.

5. Using the sequence T` of uniformly refined meshes, plot the convergence of the
global discretization error in the energy norm ‖∇(u − u`)‖, as well as that of the
error |Qj(u) − Qj(u`)| in both quantities of interest Q1 and Q2. Comment on the
obtained results.

Answer 1. (Analysis of the error)

The answers to items 1–3 are contained in the script TP3.edp. We now illustrate answers
to questions 4–5.

4. One should obtain the results as in Figure 2.
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IsoValue
0
0.0203333
0.0406665
0.0609998
0.0813331
0.101666
0.122
0.142333
0.162666
0.182999
0.203333
0.223666
0.243999
0.264332
0.284666
0.304999
0.325332
0.345666
0.365999
0.386332
0.406665

primal exact solution (step 1)
IsoValue
3.55635e-63
0.0202272
0.0404544
0.0606816
0.0809088
0.101136
0.121363
0.14159
0.161818
0.182045
0.202272
0.222499
0.242726
0.262954
0.283181
0.303408
0.323635
0.343862
0.364089
0.384317
0.404544

primal numerical approximation (step 0)

Figure 2: Exact solution u (left) and approximate solution u` (right, p = 1)
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Figure 3: Energy error ‖∇(u− u`)‖ with respect to the DoFs, p = 1

5. One should obtain the results as in Figures 3 and 4. In a smooth case, the en-
ergy error converges as O(DoFs)−p/2, whereas the error in the goal functional as
O(DoFs)−p. As the solution u of (2) is smooth, we indeed observe the O(DoFs)−1/2

rate for the energy error, since we illustrate here the polynomial degree p = 1.
As for the goal functional Q1 from (3), the convergence rate is indeed doubled to
O(DoFs)−1. This is, however, not the case for Q2, which is connected with its
non-volumetric nature: we only have O(DoFs)−1/2 rate for Q2.

Exercise 2. (Goal-oriented error estimation)

For both j ∈ {1, 2}, we would be tempted to define the adjoint problems as: find ũ ∈ V
such that for all v ∈ V ,

(∇ũ,∇v) = Qj(v). (7)

This is perfectly fine for the volumetric quantity of interest Q1 from (3), where the strong
form of the problem reads: find ũ : Ω→ R such that

−∆ũ = f̃ in Ω, (8a)

u = 0 on ΓD, (8b)

−∇ũ·nΩ = 0 on ΓN (8c)

with the source term

f̃ :=
1

|ωQ|
1ωQ

only nonzero in the subregion ωQ.
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Figure 4: Error in the quantity of interest |Qj(u)−Qj(u`)| in function of the DoFs, p = 1
(left for Q1, right for Q2)

On the other hand, for the quantity of interest Q2 from (3) of surface nature, Q2(v)
is not even defined for v ∈ V (indeed, the trace of ∂v

∂x
on ΓR does not necessarily exist).

In this case, actually, proceeding as in, e.g., [1], the correct form of the adjoint problems
reads: find ũ ∈ H1(Ω) such that ũ|ΓD

= ũD and such that for all v ∈ V ,

(∇ũ,∇v) = 0. (9)

The strong form of (9) is then: find ũ : Ω→ R such that

−∆ũ = 0 in Ω, (10a)

u = ũD on ΓD, (10b)

−∇ũ·nΩ = 0 on ΓN. (10c)

Here ũD is the “extractor function” which needs to take the value 1
|ΓR|

= 1 on ΓR and

should “vanish” on the rest of ΓD. In order to correctly use it in (10b), we, however,
need it in the space H1/2(ΓD), i.e., it has to be a trace of a function from H1(Ω). This
means that we actually cannot set ũD to zero in the rest of the Dirichlet boundary ΓD. In
our problem, where, on the bottom side of the square y = 0, the exact solution u is zero
and also its gradient is small, the value of ũD on y = 0 actually does not count much.
Consequently, we set ũD = x on the bottom side y = 0 and ũD = 0 on the left side x = 0
(this is done in the script below VthP1 ValDir). As usual, we also introduce the adjoint
flux σ̃ := −∇ũ.

1. Perform the assembly of problem (7) for Q1 and (9) for Q2, in order to compute
approximate solutions ũ` with FEM and the same initial mesh as for the primal
problem, and plot them. What is the physical representation of the adjoint loading?

2. Construct the equilibrated fluxes: σ` for the primal problem and σ̃` for the two
adjoint problems. Attention, for the original (primal) problem (1), we now have an
inhomogeneous Neumann boundary condition imposed on ΓN, so that the boundary
conditions of the patch mixed finite element minimizations need to be appropriately
adjusted for boundary vertices lying at ΓN.

3. Considering again the same meshes for primal and adjoint problems, compute the
following basic error estimate for the first quantity of interest Q1:

|Q1(u)−Q1(u`)| = |(∇(u− u`),∇(ũ− ũ`))| ≤ ηQI := η`η̃`, (11)
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where η` and η̃` are the equilibrated fluxes estimators for primal and adjoint prob-
lems,

‖∇(u− u`)‖ ≤ η` := ‖σ` +∇u`‖ and ‖∇(ũ− ũ`)‖ ≤ η̃` := ‖σ̃` +∇ũ`‖. (12)

We remark that there are no data oscillation estimators here. For the second quan-
tity of interest Q2, the situation is a bit more involved. Following again [1], equa-
tion (4.14) (take sih = uih = u`), we, however, have (after integration by parts)

|Q2(u)−Q2(u`)| ≤ ηQI := η`η̃` + |〈∇u`·nΩ, ũD〉ΓD
− 〈σ`·nΩ, ũ`〉ΓN

|. (13)

Note there are two supplementary boundary terms in comparison with (11).

4. Analyze the evolution of the goal estimate ηQI with respect to the exact goal error
|Qj(u) − Qj(u`)|, j = 1, 2, for the sequence of uniformly refined meshes performed
in Exercice 1. In particular, plot the effectivity indices given by

ηQI

|Qj(u)−Qj(u`)|
, (14)

as well as the effectivity indices related to the primal and dual energy estimates (12)

η`
‖∇(u− u`)‖

and
η̃`

‖∇(ũ− ũ`)‖
. (15)

5. For both cases j ∈ {1, 2}, implement the improved bound

|Qj(u)−Qj(u`)− C`| ≤
1

2
η`η̃` + |〈(∇u` + σ`)·nΩ, ũD〉ΓD

|, (16)

where C` := 1
2
(σ` + ∇u`, σ̃` + ∇ũ`) is a computable correction term and where

ũD = 0 for Q1 (see [1, Theorem 4.8] for the boundary term appearing for Q2). This
bound can be rewritten as

|Qj(u)−Qj(u`)| ≤ ηimpr
QI := max

θ=±1

∣∣∣C` + θ
(1

2
η`η̃` + |〈(∇u` + σ`)·nΩ, ũD〉ΓD

|
)∣∣∣. (17)

6. In a similar way as in question 4. of Exercise 2, analyze the evolution of the new
goal estimate with respect to the exact goal error.

Answer 2. (Goal-oriented error estimation)

The answers to items 3 and 5 are contained in the script TP3.edp. As for the other
questions:

1. One should obtain the results as in Figure 5. We note a strong localization of the
dual approximation ũ` around the subregion ωQ for the quantity of interest Q1. For
Q2, it follows from our choice of the extractor function ũD in (9)–(10) that

ũ(x, y) = ũ`(x, y) = x. (18)

The physical representation of the adjoint loading is a volumetric source term with
value 1/|ωQ| in ωQ for Q1 and imposition of the Dirichlet boundary condition equal
to the extractor function ũD with value 1/|ΓR| on ΓR.
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IsoValue
1.61077e-62
0.017319
0.034638
0.051957
0.0692761
0.0865951
0.103914
0.121233
0.138552
0.155871
0.17319
0.190509
0.207828
0.225147
0.242466
0.259785
0.277104
0.294423
0.311742
0.329061
0.34638

dual numerical approximation (step 0)
IsoValue
5e-32
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
1

dual numerical approximation (step 0)

Figure 5: Approximate solution ũ` of the adjoint problem, p = 1 (left for Q1 and right
for Q2)

2. The formula is still
σ` :=

∑
a∈V`

σa
` , (19a)

where
σa
` := arg min

v`∈RTp′ (Ta)∩H0(div,ωa)

∇·v`=Πp′ (fψ
a−∇u`·∇ψa)

‖ψa∇u` + v`‖2
ωa
. (19b)

The space H0(div, ωa) for vertices a inside the computational domain Ω is the same
as in tutorial N◦1, i.e., the subspace of all functions from H(div, ωa) whose normal
trace vanishes on ∂ωa. For a vertex a on the boundary of Ω, we request 1) the
normal trace to vanish on the part of ∂ωa where ψa is zero (typically the part of
∂ωa not contained in ∂Ω); 2) the normal trace to equal to −ψa on ΓN ∩ ∂ωa. Note
that after summing in (19a), by virtue of the partition of unity

∑
a∈V` ψ

a = 1, the
normal trace of the equilibrated flux σ` on ΓN is indeed equal to −1, in accordance
with (1c).

4. Figure 6 shows the evolution of the goal estimates ηQI of (11) or (13) in comparison
with the exact goal errors |Qj(u)−Qj(u`)|. More specifically, we plot the effectivity
indices given by (14) for both j = 1 and j = 2. We observe that they are perfectly
close to the optimal value of one forQ2 but rather increased forQ1. The inspection of
the primal and dual energy effectivity indices of (15) turns very much illuminating
here. For the former one, in the case of Q1, both are excellent, as witnessed in
Figure 7. The reason why the bound (11) can be imprecise is a cornerstone of
estimates in quantities of interest: both ∇(u − u`) and ∇(ũ − ũ`) can be nonzero
vectors, but their scalar product can be (close to) zero, which harms the Cauchy–
Schwarz bound in (11). In the case of Q2, it follows from (18) that ‖∇(ũ− ũ`)‖ =
η̃` = 0, so that we only see a consequence of rounding errors in the right part of
Figure 8 (which explains the values below one), and only the two supplementary
boundary terms in (13) form the estimate ηQI.

6. With the improved bound as defined by (17), we obtain the results of Figure 9. For
Q1, the effectivity indices are improved roughly by a factor of 2, whereas there is
not much to improve for Q2.
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Figure 6: Quantity of interest effectivity indices (14), p = 1 (left for Q1 and right for Q2)
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Figure 7: Energy error effectivity indices (15) for the primal (left) and dual (right) prob-
lems, p = 1 and Q1

Exercise 3. (Mesh adaptation)

1. From the improved error estimate (17), in the case of Q1, define the local error
contributions as:

|Q1(u)−Q1(u`)| ≤ ηimpr
QI := max

θ=±1

∣∣∣∣∣∣
∑
K∈T`

CK
` +

θ

2

√∑
K∈T`

ξ2
K

∣∣∣∣∣∣ (20a)

where for all K ∈ T`, CK
` is the local contribution to C`, i.e.

CK
` :=

1

2
(σ` +∇u`, σ̃` +∇ũ`)K , (20b)

and

ξ2
K =

1

2
(η2
` η̃

2
K + η2

K η̃`
2). (20c)

2. Adapt the mesh following these elementwise error estimators. Please report all the
distribution of ξK , CK

` , the primal and dual energy errors ‖∇(u − u`)‖K , ‖∇(ũ −
ũ`)‖K , the primal and dual energy estimators ‖σ` +∇u`‖K , ‖σ̃` +∇ũ`‖K , and the
sequence of refined meshes. Compare the results to those of uniform mesh refinement
of Exercises 1 and 2.

Answer 3. (Mesh adaptation)

The answer to item 1 is contained in the script TP3.edp.
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Figure 8: Energy error effectivity indices (15) for the primal (left) and dual (right) prob-
lems, p = 1 and Q2
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Figure 9: Effectivity indices given by the ratio ηimpr
QI /|Qj(u) − Qj(u`)| of the improved

goal error estimate over the exact goal error, see (17), p = 1 (left for Q1 and right for Q2)

2. The results are given in Figures 10–14. We see a good prediction of the localization
of both the primal and dual energy errors. Then, refinement based on the combined
estimator ξK adjusts the meshes towards all the problematic areas – the two upper
corners and the vicinity of ωQ. Figure 14, however, shows that the evolution of the
quantity of interest error |Q1(u)−Q1(u`)| with respect to the number of DoFs, with
mesh adaptation, does not improve considerably over uniform meshes. The reason
is that the best-possible error decay has already been achieved with uniform mesh
refinement, see Figure 4. The effectivity indices, though, improve well in comparison
with uniform mesh refinement, see Figure 9, left.
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IsoValue
0.000173245
0.00250339
0.00483354
0.00716369
0.00949384
0.011824
0.0141541
0.0164843
0.0188144
0.0211446
0.0234747
0.0258049
0.028135
0.0304652
0.0327953
0.0351255
0.0374556
0.0397858
0.0421159
0.0444461
0.0467762

primal energy errors
IsoValue
0.000136142
0.00287152
0.00560689
0.00834227
0.0110776
0.013813
0.0165484
0.0192838
0.0220191
0.0247545
0.0274899
0.0302253
0.0329606
0.035696
0.0384314
0.0411668
0.0439021
0.0466375
0.0493729
0.0521083
0.0548437

primal energy estimators

Figure 10: Primal energy errors ‖∇(u− u`)‖K (left) and primal energy estimators ‖σ` +
∇u`‖K (right), p = 1, Q1

IsoValue
0.000253294
0.0061882
0.0121231
0.018058
0.0239929
0.0299278
0.0358627
0.0417976
0.0477325
0.0536674
0.0596023
0.0655372
0.0714721
0.077407
0.0833419
0.0892768
0.0952117
0.101147
0.107082
0.113016
0.118951

dual energy errors
IsoValue
0.000295123
0.00682619
0.0133572
0.0198883
0.0264194
0.0329504
0.0394815
0.0460126
0.0525436
0.0590747
0.0656057
0.0721368
0.0786679
0.0851989
0.09173
0.0982611
0.104792
0.111323
0.117854
0.124385
0.130916

dual energy estimators

Figure 11: Dual energy errors ‖∇(ũ−ũ`)‖K (left) and dual energy estimators ‖σ̃`+∇ũ`‖K
(right), p = 1, Q1

IsoValue
-4.36138e-05
-3.79239e-05
-3.22339e-05
-2.6544e-05
-2.08541e-05
-1.51642e-05
-9.47427e-06
-3.78435e-06
1.90557e-06
7.59549e-06
1.32854e-05
1.89753e-05
2.46652e-05
3.03552e-05
3.60451e-05
4.1735e-05
4.74249e-05
5.31148e-05
5.88048e-05
6.44947e-05
7.01846e-05

complement estimators
IsoValue
0.000278907
0.000797219
0.00131553
0.00183384
0.00235216
0.00287047
0.00338878
0.00390709
0.00442541
0.00494372
0.00546203
0.00598034
0.00649865
0.00701697
0.00753528
0.00805359
0.0085719
0.00909022
0.00960853
0.0101268
0.0106452

quantity of interest estimators

Figure 12: The correction estimators CK
` from (20b) (left) and the quantity of interest

estimators ξK from (20c) (right), p = 1, Q1
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primal mesh (step 1) primal mesh (step 3)

Figure 13: The first (left) and fourth (right) adapted mesh, p = 1, Q1
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Figure 14: The quantity of interest errors |Q1(u)−Q1(u`)| with respect to the DoFs (left)
and the improved goal effectivity indices (17) (right), mesh adaptation, p = 1, Q1
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Exercise 4. (Alternative strategy for adaptivity)

One may think of a strategy where the mesh for the adjoint problem alone is refined,
following the estimator ‖σ̃` +∇ũ`‖K (this might be expected to happen in the vicinity of
the adjoint loading where the changes in the local gradients are high), while keeping the
mesh of the primal problem unchanged. Denoting ũ` the associated adjoint finite element
approximation and σ̃` the corresponding equilibrated flux, the a posteriori error bound
now reads, for Q1,

|Q1(u)−Q1(u`)| ≤ ηQI := η`η̃`. (21)

Taking C` := 1
2
(σ` +∇u`, σ̃` +∇ũ`) and η̃` := ‖σ̃` +∇ũ`‖, we also have

|Q1(u)−Q1(u`)− C`| ≤
1

2
η`η̃`

and consequently

|Q1(u)−Q1(u`)| ≤ ηimpr
QI := max

θ=±1

∣∣∣C` +
θ

2
η`η̃`

∣∣∣. (22)

1. For a sequence of locally adapted meshes when solving the adjoint problem but a
fixed mesh for the primal problem, analyze the evolution of the goal estimate with
respect to the exact goal error, and plot effectivity indices.

Answer 4. (Alternative strategy for adaptivity)

1. Setting bool MeshRefAdjoint = true allows to perform the simulations and Fig-
ure 15 shows the results. Since the primal mesh T0 does not change, |Q1(u)−Q1(u`)|,
as well as ‖σ` + ∇u`‖ (for ` = 0), are constant. The quality of the dual error es-
timate ‖∇(ũ − ũ`)‖ ≤ η̃` := ‖σ̃` + ∇ũ`‖, in turn, improves. Thus the effectivity
indices for the quantity of interest improve.
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Figure 15: Quantity of interest effectivity indices given by the ratio ηQI/|Q1(u)−Q1(u`)|
from (21) (left) and ηimpr

QI /|Q1(u)−Q1(u`)| from (22) (right), p = 1, Q1
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Exercise 5. (Goal-oriented error estimation near singularities)

We now consider a domain with a square hole of size 0.2×0.2 centered at point (0.5, 0.5),
see Figure 16. Consequently, the solutions will exhibit local singularities. The same
boundary conditions as in the previous example are applied on the external boundary,
while a free edge condition −∇u·nΩ = 0 is considered on the border ΓS of the hole.

1. Perform the same analysis as before, considering as the quantity of interests again

Q1(u) :=
1

|ωQ|

∫
ωQ

u and Q2(u) := − 1

|ΓR|

∫
ΓR

∂u

∂x
;

in the first case, the subregion ωQ := (0.45, 0.55) × (0.2, 0.3) can be potentially
moved closer to the singularity. For this example, a reference solution needs to be
computed from an overkill mesh.

Figure 16: New reference problem

Answer 5. (Goal-oriented error estimation near singularities)

The corresponding code is contained in the script TP3.edp and evoked using the setting
bool hole = true. We now present the answers to Exercises 1–4.

Exercise 1: Analysis of the error

4. Figure 17 shows the exact solution u and its finite element approximation u` on the
new domain with the hole.

5. Figure 18 depicts the convergence of the primal energy error ‖∇(u − u`)‖. The
errors in the quantities of interest |Qj(u)−Qj(u`)| are then reported in Figure 19.
We obtain the rate 0.43 for the primal energy error and 0.67 for the error in the Q1

quantity of interest. For the Q2 quantity of interest, the rate appears to be bigger
than 1 here; it seems that a rather precise approximation of the unknown exact
solution u is necessary (we take noverkill = 2 and Pcontpp P4).

Exercise 2: Goal-oriented error estimation

1. One should obtain the results of Figure 20.

4. Figure 21 shows the quantity of interest effectivity indices (14). The values slightly
below 1 for Q2 seem to originate in a still not enough precise approximation of the
unknown exact solution u. The energy error effectivity indices reported in Figures 22
and 23 seem, in turn, excellent.

6. With the improved bound as defined by (17), we obtain the results of Figure 24.
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IsoValue
7.19708e-50
0.0190635
0.038127
0.0571905
0.0762539
0.0953174
0.114381
0.133444
0.152508
0.171571
0.190635
0.209698
0.228762
0.247825
0.266889
0.285952
0.305016
0.324079
0.343143
0.362206
0.38127

primal exact solution (step 0)
IsoValue
3.38109e-63
0.018826
0.037652
0.0564781
0.0753041
0.0941301
0.112956
0.131782
0.150608
0.169434
0.18826
0.207086
0.225912
0.244738
0.263564
0.28239
0.301216
0.320042
0.338868
0.357694
0.37652

primal numerical approximation (step 0)

Figure 17: Exact solution u (left) and approximate solution u` (right, p = 1), domain
with hole of Figure 16
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Figure 18: Energy error ‖∇(u− u`)‖ with respect to the DoFs, p = 1, domain with hole
of Figure 16
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Figure 19: Error in the quantity of interest |Qj(u)−Qj(u`)| in function of the DoFs, p = 1
(left for Q1, right for Q2), domain with hole of Figure 16
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IsoValue
1.89771e-62
0.0168383
0.0336766
0.050515
0.0673533
0.0841916
0.10103
0.117868
0.134707
0.151545
0.168383
0.185222
0.20206
0.218898
0.235736
0.252575
0.269413
0.286251
0.30309
0.319928
0.336766

dual numerical approximation (step 0)
IsoValue
4.83293e-32
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
1

dual numerical approximation (step 0)

Figure 20: Approximate solution ũ` of the adjoint problem, p = 1 (left for Q1 and right
for Q2), domain with hole of Figure 16
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Figure 21: Quantity of interest effectivity indices (14), p = 1 (left for Q1 and right for
Q2), domain with hole of Figure 16
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Figure 22: Energy error effectivity indices (15) for the primal (left) and dual (right)
problems, p = 1 and Q1, domain with hole of Figure 16
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Figure 23: Energy error effectivity indices (15) for the primal (left) and dual (right)
problems, p = 1 and Q2, domain with hole of Figure 16
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Figure 24: Effectivity indices given by the ratio ηimpr
QI /|Qj(u) − Qj(u`)| of the improved

goal error estimate over the exact goal error, see (17), p = 1 (left for Q1 and right for Q2),
domain with hole of Figure 16
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Exercise 3: Mesh adaptation

2. The results are given in Figures 25–29. We again observe a good prediction of
the localization of both the primal and dual energy errors. In comparison with
Exercise 3, four strong singularities appear around the four re-entrant corners of
the hole. Then, refinement based on the combined estimator ξK adjusts the meshes
towards all the problematic areas. In Figure 29, we see that the evolution of the
quantity of interest error |Q1(u)−Q1(u`)| with respect to the number of DoFs, with
mesh adaptation, is now significantly improved over uniform meshes, approaching
the optimal rate of 1.

IsoValue
6.78313e-06
0.000300693
0.000594603
0.000888513
0.00118242
0.00147633
0.00177024
0.00206415
0.00235806
0.00265197
0.00294588
0.00323979
0.0035337
0.00382761
0.00412152
0.00441543
0.00470934
0.00500325
0.00529716
0.00559107
0.00588498

primal energy errors
IsoValue
4.66701e-07
0.000331365
0.000662264
0.000993162
0.00132406
0.00165496
0.00198586
0.00231676
0.00264766
0.00297855
0.00330945
0.00364035
0.00397125
0.00430215
0.00463305
0.00496395
0.00529484
0.00562574
0.00595664
0.00628754
0.00661844

primal energy estimators

Figure 25: Primal energy errors ‖∇(u− u`)‖K (left) and primal energy estimators ‖σ` +
∇u`‖K (right), p = 1, Q1, domain with hole of Figure 16

IsoValue
8.75074e-06
0.000510918
0.00101309
0.00151525
0.00201742
0.00251959
0.00302176
0.00352392
0.00402609
0.00452826
0.00503043
0.0055326
0.00603476
0.00653693
0.0070391
0.00754127
0.00804343
0.0085456
0.00904777
0.00954994
0.0100521

dual energy errors
IsoValue
1.89462e-07
0.000666867
0.00133355
0.00200022
0.0026669
0.00333358
0.00400026
0.00466693
0.00533361
0.00600029
0.00666697
0.00733365
0.00800032
0.008667
0.00933368
0.0100004
0.010667
0.0113337
0.0120004
0.0126671
0.0133337

dual energy estimators

Figure 26: Dual energy errors ‖∇(ũ−ũ`)‖K (left) and dual energy estimators ‖σ̃`+∇ũ`‖K
(right), p = 1, Q1, domain with hole of Figure 16
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IsoValue
-2.82071e-05
-2.6623e-05
-2.50389e-05
-2.34548e-05
-2.18707e-05
-2.02866e-05
-1.87026e-05
-1.71185e-05
-1.55344e-05
-1.39503e-05
-1.23662e-05
-1.07821e-05
-9.19804e-06
-7.61395e-06
-6.02987e-06
-4.44578e-06
-2.8617e-06
-1.27761e-06
3.06476e-07
1.89056e-06
3.47465e-06

complement estimators
IsoValue
6.87232e-06
2.73491e-05
4.78259e-05
6.83027e-05
8.87795e-05
0.000109256
0.000129733
0.00015021
0.000170687
0.000191163
0.00021164
0.000232117
0.000252594
0.000273071
0.000293547
0.000314024
0.000334501
0.000354978
0.000375455
0.000395931
0.000416408

quantity of interest estimators

Figure 27: The correction estimators CK
` from (20b) (left) and the quantity of interest

estimators ξK from (20c) (right), p = 1, Q1, domain with hole of Figure 16

primal mesh (step 1) primal mesh (step 4)

Figure 28: The first (left) and fourth (right) adapted mesh, p = 1, Q1, domain with hole
of Figure 16
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Figure 29: The quantity of interest errors |Q1(u)−Q1(u`)| with respect to the DoFs (left)
and the improved goal effectivity indices (17) (right), mesh adaptation, p = 1, Q1, domain
with hole of Figure 16
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