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Design and uncertainties

Deterministic design and certification are irrelevant for many industrial applications
⇒ need to take into account uncertainties at the design stage
⇒ need to take into account uncertainties in numerical simulations
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Mechanical framework

Figure – Domain Ω with imposed forces and displacements

Quasi-static problem

Small strain hypothesis

Linear elastic material

Uncertainties can be on :

The loading

The geometry

The material elastic properties
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Mechanical problem

Kinematically admissible fields (KA)

KA(Ω) =
{

u ∈
(

H1(Ω)
)d

, u = ud sur ∂Ω ∩ ∂uΩ
}

Statically admissible fields (SA)

SA(Ω) =

{
τ ∈

(
L2(Ω)

)d×d

sym
; ∀v ∈ KA0(Ω),

∫
Ω

τ : ε (v) dΩ =

∫
Ω

f ·vdΩ+

∫
∂F Ω∩∂ω

F ·vdS

}

Constitutive relation σ = H : ε (u)

Mechanical problem [Ladeveze 75]

Find
(

uex , σ
ex

)
∈ KA(Ω) × SA(Ω) such that

eCRΩ (uex , σ
ex

) = ∥σ
ex

− H : ε
(

uex
)

∥H−1 Ω = 0

with ∥x∥H,Ω =

√∫
Ω

(
x : H : x

)
dΩ

Weak formulation
Find uex ∈ KA(Ω) such that
∀v ∈ KA0(Ω), a(uex , v) = L(v)
with L linear form and a bilinear
form

4



1

Discretized mechanical problem

Subspace finite dimension of kinematically admissible fields (KAH)

KAH(ΩH) =
{

uH ∈
(

H1(ΩH)
)d

, u = ud on ∂ΩH ∩ ∂uΩ
}

Subspace of statically admissible fields (SAH)

SAH(ΩH) =
{

τ ∈
(

L2(ΩH)
)d×d

sym
; ∀vH ∈ KA0

H(ΩH),∫
ΩH

τ : ε
(

vH
)

dΩ =
∫

ΩH

f · vHdΩ +
∫

∂F Ω∩∂ΩH

F · vHdS = L(vH)
}

Behaviour σ
H

= H : ε
(

uH
)

Finite element problem

Find uH ∈ KA(ΩH) such that
∀vH ∈ KA0(ΩH),

∫
ΩH

σ
H

: ε
(

vH
)

dΩ =
∫

ΩH

f · vHdΩ +
∫

∂F Ω∩∂ΩH

F · vHdS
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Performance function and probability of failure

Performance function (or limit state function)

G := R − S = R − L̃(u)

with R the resistance and S the solicitation. G = 0 is the limit sate.

We define dwo domains

G ≤ 0 : failure domain

G > 0 : safety domain

In linear mechanics, G is monotonic with respect to R and S. Both R and S can be
random.
Let X be the vector gathering the random variables and p the joint distribution of
random variables
Probability of failure

Pf =
∫

G(x)≤0

p(x)dx =
∫

I(G(x) ≤ 0)p(x)dx
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Performance function : one example

Crack opening according to Griffith’s criterion :

R = Klim = 22MPa
√

m is the critical stress intensity factor and S = KI is the
stress intensity factor in mode I.

X = [a; θ] is the vector containing the two random variables
⇒ G(X) = R − S(X) = R − S(a, θ)
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Methods to estimate the failure probability

Pf =
∫

G(x)≤0

p(x)dx =
∫

I(G(x) ≤ 0)p(x)dx

Several techniques exist :

Sampling : Monte Carlo estimators and variance reduction techniques subset
simulations [Au 2016], MLMC [Giles 2009], ACVT [Rashki 2018], ...

Approximating :
the limit state G = 0

methods FORM, SORM [Hasofer 1974]
support vectors machines [Vapnik 2013]

the performance function G by metamodels (+Monte Carlo sampling) : kriging
[Krige 1951], polynnomes [Wiener 1938], neural networks [Anthony 2009], ...
the mechanical solution u with stochastic finite elements [Ganhem 2003]

In this presentation, I consider support vector machines to approximate G = 0
used with Monte Carlo sampling.
For kriging, we developped methods, see [Mell 2020].
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Estimation of the failure probability

Let assume that I have an approximation Ĝ of G that has been built from m
observations

(
GH(x i ) = R − S(uH)

)
i=1..m

, that is to say m calls to the finite
element code.
We can estimated the probability of failure :

Pf =

∫
G(x)≤0

p(x)dx ≃
1

nMC

nMC∑
i=1

IĜ≤0(x i )

We introduced :

The sampling error due to the finite size of the Monte Carlo population : can

be controled by making sure that COV =
√

1−Pf
Pf ×nMC

< ζ

The approximation error due to the use of the metamodel Ĝ instead of G :
can be reduced with adaptive learning

Question

What is the influence of discretization error on Pf ?
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Influence of the discretization error on Pf

For θ = 0, Gex is known ⇒ exact computation of Pf possible

Only one random variable a

Kriging-based meta-model [Echard 2011] for different uniform
meshes of sizes h and 2 resistances Klim

Demanding criteria on the Monte Carlo population and
learning ⇒ no influence of the estimation and approximation
errors

Klim = 9MPa
√

m Klim = 14MPa
√

m
h Pf err Pf err

0.5 1.40 10−1 0.38 0 1
0.3 1.82 10−1 0.20 3.79 10−5 0.99
0.2 1.94 10−1 0.14 1.10 10−4 0.90
0.1 2.11 10−1 0.07 2.46 10−3 0.59
0.05 2.19 10−1 0.03 3.91 10−3 0.35
0.02 2.24 10−1 0.01 4.93 10−3 0.17
exact 2.27 10−1 0 5.98 10−3 0

The optimal mesh size depends on the resistance. If R is a random variable, it is
impossible to choose the mesh a priori.
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Error in constitutive relation

We introduced the subspace KAH . We use here the
error in constitutive relation [Ladeveze 1983]

Figure – Error in
constitutive relation

Pragger-Synge theorem

∥ε
(

uex − uH
)

∥H−1 = |||uex − uH ||| ≤ eCRΩ (û, σ̂) , ∀û ∈ KA(Ω) and ∀σ̂ ∈ SA(Ω)

û = uH ∈ KAH ✓

σ
H

= H : ε
(

uH
)

/∈ SA(Ω)
Building a SA field σ

H
: complex but possible : EET [Ladeveze 1983], Flux-Free

[Pares 2006], EESPT [Ladeveze 2012], STARFLEET [Rey V. 2014]

16



1

Error on the quantity of interest S than on G

Error on the quantity of interest :
If L̃ is linear, Sex − SH = L̃(uex ) − L̃(uH) = L̃(uex − uH)

Adjoint problem :

Weak formulation
Find ũex ∈ KA0(Ω) such that
∀v ∈ KA0(Ω), a(ũex , v) = L̃(v)

Finite element problem on the same mesh H

Find ũH ∈ KA0
H(Ω) such that

∀v ∈ KA0
H(Ω), a(ũH , v) = L̃(v)

Bounds on Sex [Becker Rannacher 1996, Ladeveze 2008]

Sm −
1
2

eCRΩ (uH , σ̂
H

)eCRΩ (̃uH ,
ˆ̃
σ

H
) ≤ Sex ≤ Sm +

1
2

eCRΩ (uH , σ̂
H

)eCRΩ (̃uH ,
ˆ̃
σ

H
)

with

Sm = SH −

∫
Ω

1
2

(ˆ̃
σ

H
+ H : ε

(̃
uH

)
) : H−1 : (σ̂

H
− H : ε

(
uH

)
)dΩ

We obtain bounds on Gex

G− ≤ Gex := R − Sex ≤ G+
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SVM with linear separator [Vapnik 2013]

Objective

To build a classifier D from n observations (x i , yi )i=1..n where
yi = sign(GH(x i )) ∈ {−1; 1}

In the case of linearly separable
observations, classifier D is built from
function f (x) = vT x + a with
D(x) = sign(f (x)).

Parameters v ∈ Rq and a ∈ R are sought to
maximize the margin m.

Two formulations (primal and dual) exist and
can be solved with standard optimization
algorithms

Dual formulation is : Find αi for i ∈ [1; n] such that :

1
2

n∑
i=1

n∑
j=1

αi αj yi yj xT
i x j −

n∑
i=1

αi is minimum and
n∑

i=1

αi yi = 0 and αi ≥ 0 ∀i = 1. . n
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SVM with non linear separator [Vapnik 2013]

A kernel is used to replace xT
i x j by a measure of the influence x i on x j noted

κ(x i , x j ).

Here κ(x i , x j ) = exp
(

||x i −x j ||
2

2σ2

)
where σ is an hyper-parameter determined by

cross-validation

Non-linear dual formulation is :

Find αi pour i ∈ [1; n] such that
1
2

n∑
i=1

n∑
j=1

αi αj yi yj κ(x i , x j ) −
n∑

i=1

αi is minimum and

n∑
i=1

αi yi = 0 and 0 ≤ αi ≤ C ∀i = 1. . n

where C is the penalty parameter. Here, we choose very large C ⇒
misclassification of observations is not allowed.

20



1

Estimation of the failure probability [Pan 2017]
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Non linear SVM[Pan 2017]
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Estimation of Pf by SVM and Monte Carlo sampling [Pan
2017]

X

X

X X

X

X

X

X

X

X

X

X

X

Once the metamodel converged, the probability of failure is estimated. If necessary,
the Monte Carlo population is enlarged.
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First strategy : multi-fidelity classifier

We decide to use observations GH(x i ) to build the meta model only if the sign of
GH(x i ) is certain, that is to say only if G+(x i )G−(x i ) > 0.

1. I define two mesh sizes hmin and hmax .
2. for every point x i on the DOE, I compute GH(x i ) but also G+(x i ) and

G−(x i ) on the coarse mesh hmax .
3. If G+(x i )G−(x i ) > 0, the point xi is in the correct domain despite the

discretization error
4. If not, I compute GH(x i ), G+(x i ) and G−(x i ) on the fine mesh hmin

5. If G+(x i )G−(x i ) > 0, the xi is in the correct domain
6. Otherwise I keep the observation sign(R − Sm(x i ))

The rest of the method is unchanged (selection of the learning point, controlling
the size of the Monte Carlo population)

Once the algorithm has converged, it is possible to obtain at low cost two
classifiers from sign(G+(x i )) and sign(G−(x i )) and to obtain two indicators P+
and P−
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Illustration

Figure – Pref =5.89 10−3, 16 ks, h=0.02

2 mesh sizes hmax = 0.5 et
hmin = 0.1

5 Monte Carlo populations

Parameters : η1 = 10−4 and
η2 = 0.02, nDOE = 12.

The fine mesh is used only close to the limit state. We obtain an non
guaranteed error estimtion on Pf ,ex thanks to P+ and P−
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Second strategy : double classifier [Mell 2022, submitted]

I determine a unique mesh size. I build two classifiers in parallel.

one separating the certainly fail population (G+(x i ) < 0) from the rest

one separating the certainly safe population (G−(x i ) > 0) from the rest
For each classifier the next learning point is defined. The FE code is called for
these two points. Bounds computed are used as observations for both classifiers.

It allows to :

compute upper bound P+ and lower bound P− of Pf for a given mesh

exhibit the uncertain population

At the end, if [P−; P+] is too large, I refine the mesh and only class the
uncertain population
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Illustration

Figure – Pref =5.89 10−3

2 meshes h1 = 0.28 then h2 = 0.14

5 Monte Carlo populations

Parameters : η1 = 10−4 et
η2 = 0.02, nDOE = 12.
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Illustration

Figure – Pref =5.89 10−3

2 meshes h1 = 0.28 then h2 = 0.14

5 Monte Carlo populations

Parameters : η1 = 10−4 et
η2 = 0.02, nDOE = 12.

28



1

Conclusions

It is crucial to control discretization error estimation in reliability analysis

A posteriori error estimators can guide the construction of multi-fidelity
meta-models : numerical effort is focused close to the limit state

Bounds on Gex can be used as observations to build meta-models to estimate
bounds on the probability of failure
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Prospects and open questions

Cutting-edge adaptive remeshing techniques would enable the reduction of
computational cost (generation of optimal mesh).

Balance with approximation error : generating a large Monte Carlo population
may not be necessary if the mesh size is not small enough to obtain good
accuracy close to the limit state

Time-dependant reliability raises challenges. A posteriori error estimators do
exist for non-linear constitutive laws. To which extent could they be applied ?

Towards reliability-based design and reliability-oriented computations

Balance with modeling error (mechanical model, choice of distribution of the
random variables, ...)
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Thank you

This work was carried out within the project MUSCAS (MUlti-SCAle Stochastic
computation for MRE) granted by WEAMEC, West Atlantic Marine Energy

Community with the support of Région Pays de la Loire and in partnership with
Chantiers de l’Atlantique.
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