

Reliable, efficient, and robust a posteriori estimates for nonlinear elliptic \& parabolic problems

(1) Introduction: nonlinear elliptic problems
(2) Main analytical results
(3) Scope of the results
(4) Numerical results
(5) Nonlinear parabolic problems
\triangle UHASSELT FWO1 Outline
(1) Introduction: nonlinear elliptic problems12
(2) Main analytical results
(3) Scope of the results
(4) Numerical results
(5) Nonlinear parabolic problems
\triangle UHASSELT FWO

Nonlinear elliptic problems
For $d \in \mathbb{N}$, let $\Omega \subset \mathbb{R}^{d}$ be an open and bounded polytope. Let $u \in H_{0}^{1}(\Omega)$ solve the nonlinear elliptic operator equation: for $\mathcal{R}: H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)$,

$$
\langle\mathcal{R}(u), \varphi\rangle=0 \quad \forall \varphi \in H_{0}^{1}(\Omega) .
$$

Nonlinear elliptic problems
For $d \in \mathbb{N}$, let $\Omega \subset \mathbb{R}^{d}$ be an open and bounded polytope. Let $u \in H_{0}^{1}(\Omega)$ solve the nonlinear elliptic operator equation: for $\mathcal{R}: H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)$,

$$
\langle\mathcal{R}(u), \varphi\rangle=0 \quad \forall \varphi \in H_{0}^{1}(\Omega)
$$

Assumption $1 \mathcal{R}$ is monotone \& Lipschitz*
For a numerical approximation $u_{\ell} \in H_{0}^{1}(\Omega)$, and constants $\lambda_{\mathrm{M}}>\lambda_{\mathrm{m}}>0$,

$$
\lambda_{\mathrm{m}} \operatorname{dist}\left(u_{\ell}, u\right) \leq \sup _{\varphi \in H_{0}^{1}(\Omega)} \frac{\left\langle\mathcal{R}\left(u_{\ell}\right)-\mathcal{R}(u), \varphi\right\rangle}{\|\nabla \varphi\|} \leq \lambda_{\mathrm{M}} \operatorname{dist}\left(u_{\ell}, u\right)
$$

Nonlinear elliptic problems
For $d \in \mathbb{N}$, let $\Omega \subset \mathbb{R}^{d}$ be an open and bounded polytope. Let $u \in H_{0}^{1}(\Omega)$ solve the nonlinear elliptic operator equation: for $\mathcal{R}: H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)$,

$$
\langle\mathcal{R}(u), \varphi\rangle=0 \quad \forall \varphi \in H_{0}^{1}(\Omega)
$$

Assumption $1 \mathcal{R}$ is monotone \& Lipschitz*
For a numerical approximation $u_{\ell} \in H_{0}^{1}(\Omega)$, and constants $\lambda_{\mathrm{M}}>\lambda_{\mathrm{m}}>0$,

$$
\lambda_{\mathrm{m}} \operatorname{dist}\left(u_{\ell}, u\right) \leq \sup _{\varphi \in H_{0}^{1}(\Omega)} \frac{\left\langle\mathcal{R}\left(u_{\ell}\right), \varphi\right\rangle}{\|\nabla \varphi\|} \leq \lambda_{\mathrm{M}} \operatorname{dist}\left(u_{\ell}, u\right)
$$

1 Introduction

Nonlinear elliptic problems
For $d \in \mathbb{N}$, let $\Omega \subset \mathbb{R}^{d}$ be an open and bounded polytope. Let $u \in H_{0}^{1}(\Omega)$ solve the nonlinear elliptic operator equation: for $\mathcal{R}: H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)$,

$$
\langle\mathcal{R}(u), \varphi\rangle=0 \quad \forall \varphi \in H_{0}^{1}(\Omega) .
$$

Assumption $1 \mathcal{R}$ is monotone \& Lipschitz*
For a numerical approximation $u_{\ell} \in H_{0}^{1}(\Omega)$, and constants $\lambda_{\mathrm{M}}>\lambda_{\mathrm{m}}>0$,

$$
\lambda_{\mathrm{m}} \operatorname{dist}\left(u_{\ell}, u\right) \leq \underbrace{\sup _{\varphi \in H_{0}^{1}(\Omega)} \frac{\left\langle\mathcal{R}\left(u_{\ell}\right), \varphi\right\rangle}{\|\nabla \varphi\|}}_{\left\|\mathcal{R}\left(u_{\ell}\right)\right\|_{H^{-1}(\Omega)}} \leq \lambda_{\mathrm{M}} \operatorname{dist}\left(u_{\ell}, u\right) .
$$

Nonlinear elliptic problems
For $d \in \mathbb{N}$, let $\Omega \subset \mathbb{R}^{d}$ be an open and bounded polytope. Let $u \in H_{0}^{1}(\Omega)$ solve the nonlinear elliptic operator equation: for $\mathcal{R}: H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)$,

$$
\langle\mathcal{R}(u), \varphi\rangle=0 \quad \forall \varphi \in H_{0}^{1}(\Omega) .
$$

Assumption $1 \mathcal{R}$ is monotone \& Lipschitz*
For a numerical approximation $u_{\ell} \in H_{0}^{1}(\Omega)$, and constants $\lambda_{\mathrm{M}}>\lambda_{\mathrm{m}}>0$,

$$
\lambda_{\mathrm{m}} \operatorname{dist}\left(u_{\ell}, u\right) \leq\left\|\mathcal{R}\left(u_{\ell}\right)\right\|_{H^{-1}(\Omega)} \leq \lambda_{\mathrm{M}} \operatorname{dist}\left(u_{\ell}, u\right) .
$$

1 Introduction

Nonlinear elliptic problems
For $d \in \mathbb{N}$, let $\Omega \subset \mathbb{R}^{d}$ be an open and bounded polytope. Let $u \in H_{0}^{1}(\Omega)$ solve the nonlinear elliptic operator equation: for $\mathcal{R}: H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)$,

$$
\langle\mathcal{R}(u), \varphi\rangle=0 \quad \forall \varphi \in H_{0}^{1}(\Omega) .
$$

Assumption $1 \mathcal{R}$ is monotone \& Lipschitz*
For a numerical approximation $u_{\ell} \in H_{0}^{1}(\Omega)$, and constants $\lambda_{\mathrm{M}}>\lambda_{\mathrm{m}}>0$,

$$
\lambda_{\mathrm{m}} \operatorname{dist}\left(u_{\ell}, u\right) \leq\left\|\mathcal{R}\left(u_{\ell}\right)\right\|_{H^{-1}(\Omega)} \leq \lambda_{\mathrm{M}} \operatorname{dist}\left(u_{\ell}, u\right) .
$$

The strength of the nonlinearity is measued by $\lambda_{\mathrm{M}} / \lambda_{\mathrm{m}}$

1 Introduction

Nonlinear elliptic problems
For $d \in \mathbb{N}$, let $\Omega \subset \mathbb{R}^{d}$ be an open and bounded polytope. Let $u \in H_{0}^{1}(\Omega)$ solve the nonlinear elliptic operator equation: for $\mathcal{R}: H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)$,

$$
\langle\mathcal{R}(u), \varphi\rangle=0 \quad \forall \varphi \in H_{0}^{1}(\Omega) .
$$

Assumption $1 \mathcal{R}$ is monotone \& Lipschitz*

For a numerical approximation $u_{\ell} \in H_{0}^{1}(\Omega)$, and constants $\lambda_{\mathrm{M}}>\lambda_{\mathrm{m}}>0$,

$$
\lambda_{\mathrm{m}} \operatorname{dist}\left(u_{\ell}, u\right) \leq\left\|\mathcal{R}\left(u_{\ell}\right)\right\|_{H^{-1}(\Omega)} \leq \lambda_{\mathrm{M}} \operatorname{dist}\left(u_{\ell}, u\right) .
$$

The strength of the nonlinearity is measued by $\lambda_{\mathrm{M}} / \lambda_{\mathrm{m}}$
Then the estimate [Chaillou \& Suri (2006), Kim (2007), Houston et al (2008), Garau et al (2011),...],

$$
\lambda_{\mathrm{m}} \operatorname{dist}\left(u_{\ell}, u\right) \leq \eta\left(u_{\ell}\right) \leq C \lambda_{\mathrm{M}} \operatorname{dist}\left(u_{\ell}, u\right)
$$

is not robust with respect to $\lambda_{\mathrm{M}} / \lambda_{\mathrm{m}}$

Reliable, and locally efficient a posteriori error estimates robust with respect to the strength of the nonlinearity $\lambda_{\mathrm{M}} / \lambda_{\mathrm{m}}$

$$
\left\|\mathcal{R}\left(u_{\ell}\right)\right\|_{H^{-1}(\Omega)} \leq \eta\left(u_{\ell}\right) \leq C\left\|\mathcal{R}\left(u_{\ell}\right)\right\|_{H^{-1}(\Omega)}
$$

[Chaillou \& Suri (2006), El Alaoui et al (2011), Ern \& Vohralík (2013), Blechta et al (2018)]

Reliable, and locally efficient a posteriori error estimates robust with respect to the strength of the nonlinearity $\lambda_{\mathrm{M}} / \lambda_{\mathrm{m}}$

$$
\left\|\mathcal{R}\left(u_{\ell}\right)\right\|_{H^{-1}(\Omega)} \leq \eta\left(u_{\ell}\right) \leq C\left\|\mathcal{R}\left(u_{\ell}\right)\right\|_{H^{-1}(\Omega)}
$$

[Chaillou \& Suri (2006), El Alaoui et al (2011), Ern \& Vohralík (2013), Blechta et al (2018)]

- The dual norm of the residual might be too weak an error measure

Consider the diffusion eq: $\langle\mathcal{R}(u), \varphi\rangle:=(f, \varphi)-(\mathcal{D} \nabla u, \nabla \varphi)=0$.
Let $\lambda_{\mathrm{m}}|\boldsymbol{y}|^{2} \leq \boldsymbol{y}^{\mathrm{T}} \mathcal{D} \boldsymbol{y} \leq \lambda_{\mathrm{M}}|\boldsymbol{y}|^{2}$, for all $\boldsymbol{y} \in \mathbb{R}^{\boldsymbol{d}}$.

Consider the diffusion eq: $\langle\mathcal{R}(u), \varphi\rangle:=(f, \varphi)-(\mathcal{D} \nabla u, \nabla \varphi)=0$.
Let $\lambda_{\mathrm{m}}|\boldsymbol{y}|^{2} \leq \boldsymbol{y}^{\mathrm{T}} \mathcal{D} \boldsymbol{y} \leq \lambda_{\mathrm{M}}|\boldsymbol{y}|^{2}$, for all $\boldsymbol{y} \in \mathbb{R}^{d}$. If $u_{\ell} \in V_{\ell} \subset H_{0}^{1}(\Omega)$ is the FE solution of the problem then Cea's lemma gives

$$
\left\|\nabla\left(u-u_{\ell}\right)\right\| \leq \frac{\lambda_{\mathrm{M}}}{\lambda_{\mathrm{m}}}\left\|\nabla\left(u-\varphi_{\ell}\right)\right\| \quad \forall \varphi_{\ell} \in V_{\ell} .
$$

Consider the diffusion eq: $\langle\mathcal{R}(u), \varphi\rangle:=(f, \varphi)-(\mathcal{D} \nabla u, \nabla \varphi)=0$.
Let $\lambda_{\mathrm{m}}|\boldsymbol{y}|^{2} \leq \boldsymbol{y}^{\mathrm{T}} \mathcal{D} \boldsymbol{y} \leq \lambda_{\mathrm{M}}|\boldsymbol{y}|^{2}$, for all $\boldsymbol{y} \in \mathbb{R}^{d}$. If $u_{\ell} \in V_{\ell} \subset H_{0}^{1}(\Omega)$ is the FE solution of the problem then Cea's lemma gives

$$
\left\|\nabla\left(u-u_{\ell}\right)\right\| \leq \frac{\lambda_{\mathrm{M}}}{\lambda_{\mathrm{m}}}\left\|\nabla\left(u-\varphi_{\ell}\right)\right\| \quad \forall \varphi_{\ell} \in V_{\ell} .
$$

In this case $\left\|\mathcal{R}\left(u_{\ell}\right)\right\|_{H^{-1}(\Omega)}$ can be estimated robustly, but might be too weak an error measure.

$$
\lambda_{\mathrm{m}}\left\|\nabla\left(u-u_{\ell}\right)\right\| \leq\left\|\mathcal{R}\left(u_{\ell}\right)\right\|_{H^{-1}(\Omega)} \leq \lambda_{\mathrm{M}}\left\|\nabla\left(u-u_{\ell}\right)\right\| .
$$

Consider the diffusion eq: $\langle\mathcal{R}(u), \varphi\rangle:=(f, \varphi)-(\mathcal{D} \nabla u, \nabla \varphi)=0$.
Let $\lambda_{\mathrm{m}}|\boldsymbol{y}|^{2} \leq \boldsymbol{y}^{\mathrm{T}} \mathcal{D} \boldsymbol{y} \leq \lambda_{\mathrm{M}}|\boldsymbol{y}|^{2}$, for all $\boldsymbol{y} \in \mathbb{R}^{d}$. If $u_{\ell} \in V_{\ell} \subset H_{0}^{1}(\Omega)$ is the FE solution of the problem then Cea's lemma gives

$$
\left\|\nabla\left(u-u_{\ell}\right)\right\| \leq \frac{\lambda_{\mathrm{M}}}{\lambda_{\mathrm{m}}}\left\|\nabla\left(u-\varphi_{\ell}\right)\right\| \quad \forall \varphi_{\ell} \in V_{\ell} .
$$

In this case $\left\|\mathcal{R}\left(u_{\ell}\right)\right\|_{H^{-1}(\Omega)}$ can be estimated robustly, but might be too weak an error measure.
However, defining the energy norm $\|\varphi\|_{1, \mathcal{D}}=\left\|\mathcal{D}^{\frac{1}{2}} \nabla \varphi\right\|$ one has

$$
\left\|u-u_{\ell}\right\|_{1, \mathcal{D}} \leq\left\|u-\varphi_{\ell}\right\|_{1, \mathcal{D}}, \quad \forall \varphi_{\ell} \in V_{\ell}
$$

Consider the diffusion eq: $\langle\mathcal{R}(u), \varphi\rangle:=(f, \varphi)-(\mathcal{D} \nabla u, \nabla \varphi)=0$.
Let $\lambda_{\mathrm{m}}|\boldsymbol{y}|^{2} \leq \boldsymbol{y}^{\mathrm{T}} \mathcal{D} \boldsymbol{y} \leq \lambda_{\mathrm{M}}|\boldsymbol{y}|^{2}$, for all $\boldsymbol{y} \in \mathbb{R}^{d}$. If $u_{\ell} \in V_{\ell} \subset H_{0}^{1}(\Omega)$ is the FE solution of the problem then Cea's lemma gives

$$
\left\|\nabla\left(u-u_{\ell}\right)\right\| \leq \frac{\lambda_{\mathrm{M}}}{\lambda_{\mathrm{m}}}\left\|\nabla\left(u-\varphi_{\ell}\right)\right\| \quad \forall \varphi_{\ell} \in V_{\ell} .
$$

In this case $\left\|\mathcal{R}\left(u_{\ell}\right)\right\|_{H^{-1}(\Omega)}$ can be estimated robustly, but might be too weak an error measure.
However, defining the energy norm $\|\varphi\|_{1, \mathcal{D}}=\left\|\mathcal{D}^{\frac{1}{2}} \nabla \varphi\right\|$ one has

$$
\left\|u-u_{\ell}\right\|_{1, \mathcal{D}} \leq\left\|u-\varphi_{\ell}\right\|_{1, \mathcal{D}}, \quad \forall \varphi_{\ell} \in V_{\ell}
$$

This motivates rather the error measure

$$
\left\|\mathcal{R}\left(u_{\ell}\right)\right\|_{-1, \mathcal{D}}:=\sup _{\varphi \in H_{0}^{1}(\Omega)} \frac{\left\langle\mathcal{R}\left(u_{\ell}\right), \varphi\right\rangle}{\|\varphi\|_{1, \mathcal{D}}}=\left\|u-u_{\ell}\right\|_{1, \mathcal{D}}
$$

which also results in robust estimates

Example (nonlinear diffusion): $\langle\mathcal{R}(u), \varphi\rangle:=(f, \varphi)-(\mathcal{D}(u) \nabla u, \nabla \varphi)=0$.

Example (nonlinear diffusion): $\langle\mathcal{R}(u), \varphi\rangle:=(f, \varphi)-(\mathcal{D}(u) \nabla u, \nabla \varphi)=0$.

Then $\left\|\|\mathcal{R}(\cdot)\|_{-1, \mathcal{D}(u)}\right.$ cannot be defined since $u \in H_{0}^{1}(\Omega)$ is unknown.

Example (nonlinear diffusion): $\langle\mathcal{R}(u), \varphi\rangle:=(f, \varphi)-(\mathcal{D}(u) \nabla u, \nabla \varphi)=0$.
Linearization iterations
We generally solve nonlinear equations by linearization iterations, i.e., by finding a sequence $\left\{u_{\ell}^{i}\right\}_{i \in \mathbb{N}} \subset V_{\ell} \subset H_{0}^{1}(\Omega)$.

Example (nonlinear diffusion): $\langle\mathcal{R}(u), \varphi\rangle:=(f, \varphi)-(\mathcal{D}(u) \nabla u, \nabla \varphi)=0$.
Linearization iterations
We generally solve nonlinear equations by linearization iterations, i.e., by finding a sequence $\left\{u_{\ell}^{i}\right\}_{i \in \mathbb{N}} \subset V_{\ell} \subset H_{0}^{1}(\Omega)$.

Example (Fixed point iteration) For each $i \in \mathbb{N}$ and $u_{\ell}^{i} \in V_{\ell}$, let $u_{\ell}^{i+1} \in V_{\ell}$ solve $\left(\mathcal{D}\left(u_{\ell}^{i}\right) \nabla u_{\ell}^{i+1}, \nabla \varphi_{\ell}\right)=\left(f, \varphi_{\ell}\right)$ for all $\varphi_{\ell} \in V_{\ell}$.

Example (nonlinear diffusion): $\langle\mathcal{R}(u), \varphi\rangle:=(f, \varphi)-(\mathcal{D}(u) \nabla u, \nabla \varphi)=0$.
Linearization iterations
We generally solve nonlinear equations by linearization iterations, i.e., by finding a sequence $\left\{u_{\ell}^{i}\right\}_{i \in \mathbb{N}} \subset V_{\ell} \subset H_{0}^{1}(\Omega)$.

Example (Fixed point iteration) For each $i \in \mathbb{N}$ and $u_{\ell}^{i} \in V_{\ell}$, let $u_{\ell}^{i+1} \in V_{\ell}$ solve $\left(\mathcal{D}\left(u_{\ell}^{i}\right) \nabla u_{\ell}^{i+1}, \nabla \varphi_{\ell}\right)=\left(f, \varphi_{\ell}\right)$ for all $\varphi_{\ell} \in V_{\ell}$.
This is the FE approximation of $u_{\langle\ell\rangle}^{i+1} \in H_{0}^{1}(\Omega)$ solving the linear problem

$$
\left\langle\mathcal{R}_{\operatorname{lin}}^{u_{\ell}^{i}}\left(u_{\langle\ell\rangle}^{i+1}\right), \varphi\right\rangle:=(f, \varphi)-\left(\mathcal{D}\left(u_{\ell}^{i}\right) \nabla u_{\langle\ell\rangle}^{i+1}, \nabla \varphi\right)=0 \quad \forall \varphi \in H_{0}^{1}(\Omega) .
$$

1 Moving to the nonlinear case

Example (nonlinear diffusion): $\langle\mathcal{R}(u), \varphi\rangle:=(f, \varphi)-(\mathcal{D}(u) \nabla u, \nabla \varphi)=0$.
Linearization iterations
We generally solve nonlinear equations by linearization iterations, i.e., by finding a sequence $\left\{u_{\ell}^{i}\right\}_{i \in \mathbb{N}} \subset V_{\ell} \subset H_{0}^{1}(\Omega)$.

Example (Fixed point iteration) For each $i \in \mathbb{N}$ and $u_{\ell}^{i} \in V_{\ell}$, let $u_{\ell}^{i+1} \in V_{\ell}$ solve $\left(\mathcal{D}\left(u_{\ell}^{i}\right) \nabla u_{\ell}^{i+1}, \nabla \varphi_{\ell}\right)=\left(f, \varphi_{\ell}\right)$ for all $\varphi_{\ell} \in V_{\ell}$.
This is the FE approximation of $u_{\langle\ell\rangle}^{i+1} \in H_{0}^{1}(\Omega)$ solving the linear problem

$$
\left\langle\mathcal{R}_{\operatorname{lin}}^{u_{\ell}^{i}}\left(u_{\langle\ell\rangle}^{i+1}\right), \varphi\right\rangle:=(f, \varphi)-\left(\mathcal{D}\left(u_{\ell}^{i}\right) \nabla u_{\langle\ell\rangle}^{i+1}, \nabla \varphi\right)=0 \quad \forall \varphi \in H_{0}^{1}(\Omega)
$$

Then defining the iteration-dependent energy norm

$$
\begin{cases}\|\varphi\|_{1, u_{\ell}^{i}}:=\left\|\mathcal{D}\left(u_{\ell}^{i}\right)^{\frac{1}{2}} \nabla \varphi\right\| & \text { for } \varphi \in H_{0}^{1}(\Omega) \\ \|\zeta\|_{-1, u_{\ell}^{i}}=\sup _{\varphi \in H_{0}^{1}(\Omega)}\langle\varsigma, \varphi\rangle /\|\varphi\|_{1, u_{\ell}^{i}} & \text { for } \varsigma \in H^{-1}(\Omega)\end{cases}
$$

Example (nonlinear diffusion): $\langle\mathcal{R}(u), \varphi\rangle:=(f, \varphi)-(\mathcal{D}(u) \nabla u, \nabla \varphi)=0$.
Linearization iterations
We generally solve nonlinear equations by linearization iterations, i.e., by finding a sequence $\left\{u_{\ell}^{i}\right\}_{i \in \mathbb{N}} \subset V_{\ell} \subset H_{0}^{1}(\Omega)$.

Example (Fixed point iteration) For each $i \in \mathbb{N}$ and $u_{\ell}^{i} \in V_{\ell}$, let $u_{\ell}^{i+1} \in V_{\ell}$ solve $\left(\mathcal{D}\left(u_{\ell}^{i}\right) \nabla u_{\ell}^{i+1}, \nabla \varphi_{\ell}\right)=\left(f, \varphi_{\ell}\right)$ for all $\varphi_{\ell} \in V_{\ell}$.
This is the FE approximation of $u_{\langle\ell\rangle}^{i+1} \in H_{0}^{1}(\Omega)$ solving the linear problem

$$
\left\langle\mathcal{R}_{\operatorname{lin}}^{u_{e}^{i}}\left(u_{\langle\ell\rangle}^{i+1}\right), \varphi\right\rangle:=(f, \varphi)-\left(\mathcal{D}\left(u_{\ell}^{i}\right) \nabla u_{\langle\ell\rangle}^{i+1}, \nabla \varphi\right)=0 \quad \forall \varphi \in H_{0}^{1}(\Omega) .
$$

Then defining the iteration-dependent energy norm

$$
\begin{cases}\|\varphi\|_{1, u_{\ell}^{i}}:=\left\|\mathcal{D}\left(u_{\ell}^{i}\right)^{\frac{1}{2}} \nabla \varphi\right\| & \text { for } \varphi \in H_{0}^{1}(\Omega), \\ \|\varsigma\|_{-1, u_{\ell}^{i}}=\sup _{\varphi \in H_{0}^{1}(\Omega)}\langle\varsigma, \varphi\rangle /\|\varphi\|_{1, u_{\ell}^{i}} & \text { for } \varsigma \in H^{-1}(\Omega),\end{cases}
$$

we have (under conditions) robust estimates of
$\left\|\mathcal{R}_{\operatorname{lin}}^{u_{\ell}^{i}}\left(u_{\ell}^{i+1}\right)\right\|\left\|_{-1, u_{\ell}^{i}}=\right\|\left\|u_{\langle\ell\rangle}^{i+1}-u_{\ell}^{i+1}\right\| \|_{1, u_{\ell}^{i}}$

1 Moving to the nonlinear case

Example (nonlinear diffusion): $\langle\mathcal{R}(u), \varphi\rangle:=(f, \varphi)-(\mathcal{D}(u) \nabla u, \nabla \varphi)=0$.
Linearization iterations
We generally solve nonlinear equations by linearization iterations, i.e., by finding a sequence $\left\{u_{\ell}^{i}\right\}_{i \in \mathbb{N}} \subset V_{\ell} \subset H_{0}^{1}(\Omega)$.

Example (Fixed point iteration) For each $i \in \mathbb{N}$ and $u_{\ell}^{i} \in V_{\ell}$, let $u_{\ell}^{i+1} \in V_{\ell}$ solve $\left(\mathcal{D}\left(u_{\ell}^{i}\right) \nabla u_{\ell}^{i+1}, \nabla \varphi_{\ell}\right)=\left(f, \varphi_{\ell}\right)$ for all $\varphi_{\ell} \in V_{\ell}$.
This is the FE approximation of $u_{\langle\ell\rangle}^{i+1} \in H_{0}^{1}(\Omega)$ solving the linear problem

$$
\left\langle\mathcal{R}_{\operatorname{lin}}^{u_{\ell}^{i}}\left(u_{\langle\ell\rangle}^{i+1}\right), \varphi\right\rangle:=(f, \varphi)-\left(\mathcal{D}\left(u_{\ell}^{i}\right) \nabla u_{\langle\ell\rangle}^{i+1}, \nabla \varphi\right)=0 \quad \forall \varphi \in H_{0}^{1}(\Omega)
$$

Noting that

$$
\left\langle\mathcal{R}_{\operatorname{lin}}^{u_{\ell}^{i}}\left(u_{\ell}^{i+1}\right), \varphi\right\rangle:=-\left(\mathcal{D}\left(u_{\ell}^{i}\right) \nabla\left(u_{\ell}^{i+1}-u_{\ell}^{i}\right), \nabla \varphi\right)+\left\langle\mathcal{R}\left(u_{\ell}^{i}\right), \varphi\right\rangle
$$

can we provide a robust estimate for $\left\|\mathcal{R}\left(u_{\ell}^{i}\right)\right\|_{-1, u_{\ell}}$?
(1) Introduction: nonlinear elliptic problems
(2) Main analytical results

Decomposition of error
A posteriori error estimates
(3) Scope of the results
(4) Numerical results
(5) Nonlinear parabolic problems
\triangle UHASSELT FWO

Theorem 1 Decomposition of the total error

Under Assumption 1, provided that the linearization iterations $\left\{u_{\ell}^{i}\right\}_{i \in \mathbb{N}} \subset V_{\ell}$ are generated by FE approximations of $u_{\langle\ell\rangle}^{i} \in H_{0}^{1}(\Omega)$ solving

$$
\left\langle\mathcal{R}_{\operatorname{lin}}^{u_{\ell}^{i}}\left(u_{\langle\ell\rangle}^{i+1}\right), \varphi\right\rangle:=-\mathfrak{L}\left(u_{\ell}^{i} ; u_{\langle\ell\rangle}^{i+1}-u_{\ell}^{i}, \varphi\right)+\left\langle\mathcal{R}\left(u_{\ell}^{i}\right), \varphi\right\rangle=0 \quad \forall \varphi \in H_{0}^{1}(\Omega)
$$

and $i \geq 0$, for a symmetric, bounded, coercive, bilinear form $\mathfrak{L}\left(u_{\ell}^{i}, \cdot, \cdot\right)$,

2 An orthogonal decomposition result

Theorem 1 Decomposition of the total error

Under Assumption 1, provided that the linearization iterations $\left\{u_{\ell}^{i}\right\}_{i \in \mathbb{N}} \subset V_{\ell}$ are generated by FE approximations of $u_{\langle\ell\rangle}^{i} \in H_{0}^{1}(\Omega)$ solving

$$
\left\langle\mathcal{R}_{\operatorname{lin}}^{u_{\ell}^{i}}\left(u_{\langle\ell\rangle}^{i+1}\right), \varphi\right\rangle:=-\mathfrak{L}\left(u_{\ell}^{i} ; u_{\langle\ell\rangle}^{i+1}-u_{\ell}^{i}, \varphi\right)+\left\langle\mathcal{R}\left(u_{\ell}^{i}\right), \varphi\right\rangle=0 \quad \forall \varphi \in H_{0}^{1}(\Omega)
$$

and $i \geq 0$, for a symmetric, bounded, coercive, bilinear form $\mathfrak{L}\left(u_{\ell}^{i}, \cdot, \cdot\right)$,

Remark We would consider \mathfrak{L} : $H_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega) \mapsto \mathbb{R}$ corresponding to linear reaction-diffusion problems, i.e,

2 An orthogonal decomposition result

Theorem 1 Decomposition of the total error

Under Assumption 1, provided that the linearization iterations $\left\{u_{\ell}^{i}\right\}_{i \in \mathbb{N}} \subset V_{\ell}$ are generated by FE approximations of $u_{\langle\ell\rangle}^{i} \in H_{0}^{1}(\Omega)$ solving

$$
\left\langle\mathcal{R}_{\operatorname{lin}}^{u_{\ell}^{i}}\left(u_{\langle\ell\rangle}^{i+1}\right), \varphi\right\rangle:=-\mathfrak{L}\left(u_{\ell}^{i} ; u_{\langle\ell\rangle}^{i+1}-u_{\ell}^{i}, \varphi\right)+\left\langle\mathcal{R}\left(u_{\ell}^{i}\right), \varphi\right\rangle=0 \quad \forall \varphi \in H_{0}^{1}(\Omega)
$$

and $i \geq 0$, for a symmetric, bounded, coercive, bilinear form $\mathfrak{L}\left(u_{\ell}^{i}, \cdot, \cdot\right)$, and

$$
\|\varphi\|_{1, u_{\ell}^{i}}:=\mathfrak{L}\left(u_{\ell}^{i} ; \varphi, \varphi\right)^{\frac{1}{2}}, \quad\|\varsigma\|_{-1, u_{\ell}^{i}}:=\sup _{\varphi \in H_{0}^{1}(\Omega)} \frac{\langle\varsigma, \varphi\rangle}{\|\varphi\|_{1, u_{\ell}^{i}}},
$$

2 An orthogonal decomposition result

Theorem 1 Decomposition of the total error

Under Assumption 1, provided that the linearization iterations $\left\{u_{\ell}^{i}\right\}_{i \geq 0} \subset V_{\ell}$ are generated by FE approximations of $u_{\langle\ell\rangle}^{i} \in H_{0}^{1}(\Omega)$ solving

$$
\left\langle\mathcal{R}_{\operatorname{lin}}^{u_{\ell}^{\ell}}\left(u_{\langle\ell\rangle}^{i+1}\right), \varphi\right\rangle:=-\mathfrak{L}\left(u_{\ell}^{i} ; u_{\langle\ell\rangle}^{i+1}-u_{\ell}^{i}, \varphi\right)+\left\langle\mathcal{R}\left(u_{\ell}^{i}\right), \varphi\right\rangle=0 \quad \forall \varphi \in H_{0}^{1}(\Omega)
$$

and $i \geq 0$, for a symmetric, bounded, coercive, bilinear form $\mathfrak{L}\left(u_{\ell}^{i}, \cdot, \cdot\right)$, and

$$
\|\varphi\|_{1, u_{\ell}^{i}}:=\mathfrak{L}\left(u_{\ell}^{i} ; \varphi, \varphi\right)^{\frac{1}{2}}, \quad\|\varsigma\|_{-1, u_{\ell}^{i}}:=\sup _{\varphi \in H_{0}^{1}(\Omega)} \frac{\langle\varsigma, \varphi\rangle}{\|\varphi\|_{1, u_{\ell}^{i}}}
$$

we have

$$
\underbrace{\left\|\mathcal{R}\left(u_{\ell}^{i}\right) \mid\right\|_{-1, u_{\ell}^{i}}^{2}}_{\text {total error }}=\underbrace{\left\|\mathcal{R}_{\operatorname{lin}}^{u_{\ell}^{i}}\left(u_{\ell}^{i+1}\right) \mid\right\|_{-1, u_{\ell}^{i}}^{2}}_{\begin{array}{c}
\text { discretization error of } \\
\text { the linerization step }
\end{array}}+\underbrace{\| \| u_{\ell}^{i+1}-u_{\ell}^{i}\| \|_{1, u_{\ell}^{i}}^{2}}_{\begin{array}{c}
\text { linearization } \\
\text { error }
\end{array}}
$$

2 An orthogonal decomposition result

Theorem 1 Decomposition of the total error

Under Assumption 1, provided that the linearization iterations $\left\{u_{\ell}^{i}\right\}_{i \geq 0} \subset V_{\ell}$ are generated by FE approximations of $u_{\langle\ell\rangle}^{i} \in H_{0}^{1}(\Omega)$ solving

$$
\left\langle\mathcal{R}_{\operatorname{lin}}^{u_{\ell}^{\ell}}\left(u_{\langle\ell\rangle}^{i+1}\right), \varphi\right\rangle:=-\mathfrak{L}\left(u_{\ell}^{i} ; u_{\langle\ell\rangle}^{i+1}-u_{\ell}^{i}, \varphi\right)+\left\langle\mathcal{R}\left(u_{\ell}^{i}\right), \varphi\right\rangle=0 \quad \forall \varphi \in H_{0}^{1}(\Omega)
$$

and $i \geq 0$, for a symmetric, bounded, coercive, bilinear form $\mathfrak{L}\left(u_{\ell}^{i}, \cdot, \cdot\right)$, and

$$
\|\varphi\|_{1, u_{\ell}^{i}}:=\mathfrak{L}\left(u_{\ell}^{i} ; \varphi, \varphi\right)^{\frac{1}{2}}, \quad\|\varsigma\|_{-1, u_{\ell}^{i}}:=\sup _{\varphi \in H_{0}^{1}(\Omega)} \frac{\langle\varsigma, \varphi\rangle}{\|\varphi\|_{1, u_{\ell}^{i}}}
$$

we have

Proof: Since $u_{\ell}^{i+1}-u_{\ell}^{i} \in V_{\ell}$,

$$
\begin{aligned}
& \left\|\mathcal{R}\left(u_{\ell}^{i}\right)\right\|\left\|_{-1, u_{\ell}^{i}}^{2}=\right\|\left\|u_{\ell}^{i}-u_{\langle\ell\rangle}^{i+1}\right\|\left\|_{1, u_{\ell}^{i}}^{2}=\right\|\left\|\left(u_{\ell}^{i}-u_{\ell}^{i+1}\right)+\left(u_{\ell}^{i+1}-u_{\langle\ell\rangle}^{i+1}\right)\right\| \|_{1, u_{\ell}^{i}}^{2} \\
& \quad=\left\|u_{\langle\ell\rangle}^{i+1}-u_{\ell}^{i+1}\right\|\left\|_{1, u_{\ell}^{i}}^{2}+\right\| u_{\ell}^{i+1}-u_{\ell}^{i}\| \|_{1, u_{\ell}^{i}}^{2}+2 \underbrace{\mathfrak{L}\left(u_{\ell}^{i} ; u_{\langle\ell\rangle}^{i+1}-u_{\ell}^{i+1}, u_{\ell}^{i+1}-u_{\ell}^{i}\right)}_{=0, \text { due to Galerkin orthogonality }} \\
& \quad=\left\|\mathcal{R}_{\operatorname{lin}}^{u_{\ell}^{i}}\left(u_{\ell}^{i+1}\right)\right\|\left\|_{-1, u_{\ell}^{i}}^{2}+\right\|\left\|u_{\ell}^{i+1}-u_{\ell}^{i}\right\| \|_{1, u_{\ell}^{i}}^{2}
\end{aligned}
$$

Proof: Since $u_{\ell}^{i+1}-u_{\ell}^{i} \in V_{\ell}$,

$$
\begin{aligned}
& \left\|\mathcal{R}\left(u_{\ell}^{i}\right)\right\|_{-1, u_{\ell}^{i}}^{2}=\left\|u_{\ell}^{i}-u_{\langle\ell\rangle}^{i+1}\right\|\left\|_{1, u_{\ell}^{i}}^{2}=\right\|\left\|\left(u_{\ell}^{i}-u_{\ell}^{i+1}\right)+\left(u_{\ell}^{i+1}-u_{\langle\ell\rangle}^{i+1}\right)\right\|_{1, u_{\ell}^{i}}^{2} \\
& \quad=\| \| u_{\langle\ell\rangle}^{i+1}-u_{\ell}^{i+1}\| \|_{1, u_{\ell}^{i}}^{2}+\| \| u_{\ell}^{i+1}-u_{\ell}^{i}\| \|_{1, u_{\ell}^{i}}^{2}+2 \underbrace{2{\mathcal{L}\left(u_{\ell}^{i} ; u_{\langle\ell\rangle}^{i+1}-u_{\ell}^{i+1}, u_{\ell}^{i+1}-u_{\ell}^{i}\right)}^{=\|}\left\|\mathcal{R}_{\operatorname{lin}}^{u_{\ell}^{i}}\left(u_{\ell}^{i+1}\right)\right\|\left\|_{-1, u_{\ell}^{i}}^{2}+\right\| u_{\ell}^{i+1}-u_{\ell}^{i} \|_{1, u_{\ell}^{i}}^{2} .}_{=0, \text { due to Galerkin orthogonality }}
\end{aligned}
$$

- The linerization error is computed directly, we define

$$
\eta_{\operatorname{lin}, \Omega}^{i}:=\| \| u_{\ell}^{i+1}-u_{\ell}^{i}\| \|_{1, u_{\ell}^{i}}
$$

Proof: Since $u_{\ell}^{i+1}-u_{\ell}^{i} \in V_{\ell}$,

$$
\begin{aligned}
& \left\|\mathcal{R}\left(u_{\ell}^{i}\right)\right\|\left\|_{-1, u_{\ell}^{i}}^{2}=\right\| u_{\ell}^{i}-u_{\ell \ell}^{i+1}\left\|_{1, u_{\ell}^{i}}^{2}=\right\|\left\|\left(u_{\ell}^{i}-u_{\ell}^{i+1}\right)+\left(u_{\ell}^{i+1}-u_{\ell \ell\rangle}^{i+1}\right)\right\|_{1, u_{\ell}^{i}}^{2} \\
& =\| \| u_{\langle\ell\rangle}^{i+1}-u_{\ell}^{i+1}\| \|_{1, u_{\ell}^{i}}^{2}+\| \| u_{\ell}^{i+1}-u_{\ell}^{i}\| \|_{1, u_{\ell}^{i}}^{2}+2 \underbrace{\mathfrak{L}\left(u_{\ell}^{i} ; u_{\langle\ell\rangle}^{i+1}-u_{\ell}^{i+1}, u_{\ell}^{i+1}-u_{\ell}^{i}\right)}_{=0, \text { due to Galerkin orthogonality }} \\
& =\left\|\mathcal{R}_{\operatorname{lin}}^{u_{\ell}^{i}}\left(u_{\ell}^{i+1}\right)\right\|_{-1, u_{\ell}^{i}}^{2}+\| \| u_{\ell}^{i+1}-u_{\ell}^{i} \|_{1, u_{\ell}^{i}}^{2} .
\end{aligned}
$$

- The linerization error is computed directly, we define

$$
\eta_{\operatorname{lin}, \Omega}^{i}:=\| \| u_{\ell}^{i+1}-u_{\ell}^{i} \|_{1, u_{\ell}^{i}} \cdot
$$

- For estimating $\left\|\mid \mathcal{R}_{\operatorname{lin}}^{u_{\ell}^{i}}\left(u_{\ell}^{i+1}\right)\right\| \|_{-1, u_{\ell}^{i}}$ we introduce $\eta_{\text {disc }, \Omega}^{i}$, following the analysis on robust estimates of singularly perturbed reaction -diffusion problems in [Verfürth (1998)], [Ainsworth \& Vejchodský (2011, 2014)], [Smears \& Vohralík (2020)]

Theorem 2 Reliable, efficient, and robust a posteriori estimates
Global reliability

$$
\left\|\mathcal{R}\left(u_{\ell}^{i}\right)\right\|_{-1, u_{\ell}^{i}}^{2} \leq\left[\eta_{\Omega}^{i}\right]^{2}:=\sum_{K \in \mathcal{T}_{\ell}}\left(\left[\eta_{\text {disc }, K}^{i}\right]^{2}+\left[\eta_{\text {lin }, K}^{i}\right]^{2}\right) .
$$

Theorem 2 Reliable, efficient, and robust a posteriori estimates
Global reliability

$$
\left\|\mathcal{R}\left(u_{\ell}^{i}\right)\right\|_{-1, u_{\ell}^{i}}^{2} \leq\left[\eta_{\Omega}^{i}\right]^{2}:=\sum_{K \in \mathcal{T}_{\ell}}\left(\left[\eta_{\text {disc }, K}^{i}\right]^{2}+\left[\eta_{\text {lin }, K}^{i}\right]^{2}\right) .
$$

Global efficiency

$$
\left[\eta_{\Omega}^{i}\right]^{2} \lesssim\left\|\mathcal{R}\left(u_{\ell}^{i}\right)\right\|_{-1, u_{\ell}^{i}}^{2}+\text { (data oscillation terms). }
$$

Theorem 2 Reliable, efficient, and robust a posteriori estimates
Global reliability

$$
\left\|\mathcal{R}\left(u_{\ell}^{i}\right)\right\|_{-1, u_{\ell}^{i}}^{2} \leq\left[\eta_{\Omega}^{i}\right]^{2}:=\sum_{K \in \mathcal{T}_{\ell}}\left(\left[\eta_{\text {disc }, K}^{i}\right]^{2}+\left[\eta_{\text {lin }, K}^{i}\right]^{2}\right) .
$$

Global efficiency

$$
\left[\eta_{\Omega}^{i}\right]^{2} \lesssim\left\|\mathcal{R}\left(u_{\ell}^{i}\right)\right\|_{-1, u_{\ell}^{i}}^{2}+\text { (data oscillation terms) } .
$$

Local efficiency
For $\omega \subset \Omega$, there exists a neighbourhood $\mathfrak{T}_{\omega} \subseteq \Omega$ such that

$$
\left[\eta_{\omega}^{i}\right]^{2} \lesssim\| \| \mathcal{R}\left(u_{\ell}^{i+1}\right) \|_{-1, u_{\ell}^{i}, \mathfrak{F}_{\omega}}^{2}+\left[\eta_{\operatorname{lin}, \mathfrak{T}_{\omega}}^{i}\right]^{2}+(\text { data oscillation terms }) .
$$

(1) Introduction: nonlinear elliptic problems
(2) Main analytical results
(3) Scope of the results

Gradient-dependent diffusivity Gradient-independent diffusivity
(4) Numerical results
(5) Nonlinear parabolic problems
\triangle UHASSELT FWO

Class 1: gradient-dependent diffusivity problems
For all $\varphi \in H_{0}^{1}(\Omega), \mathcal{R}: H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)$ is defined as

$$
\langle\mathcal{R}(u), \varphi\rangle:=\langle f(\boldsymbol{x}, u), \varphi\rangle-(\sigma(x, \nabla u), \nabla \varphi)
$$

\triangle UHASSELT FWO

Class 1: gradient-dependent diffusivity problems
For all $\varphi \in H_{0}^{1}(\Omega), \mathcal{R}: H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)$ is defined as

$$
\langle\mathcal{R}(u), \varphi\rangle:=\langle f(\boldsymbol{x}, u), \varphi\rangle-(\sigma(\boldsymbol{x}, \nabla u), \nabla \varphi)
$$

Assumption 1 is satisfied if $f(\boldsymbol{x}, \cdot), \boldsymbol{\sigma}(\boldsymbol{x}, \cdot)$ are monotone and Lipschitz

$$
\begin{gathered}
(\sigma(x, y)-\sigma(x, z)) \cdot(\boldsymbol{y}-\boldsymbol{z}) \geq \lambda_{\mathrm{m}}|\boldsymbol{y}-\boldsymbol{z}|^{2} \quad \text { for } \boldsymbol{x} \in \Omega \text { and } \boldsymbol{y}, \boldsymbol{z} \in \mathbb{R}^{d}, \\
|\sigma(\boldsymbol{x}, \boldsymbol{y})-\sigma(\boldsymbol{x}, \boldsymbol{z})| \leq \lambda_{\mathrm{M}}|\boldsymbol{y}-\boldsymbol{z}| \quad \text { for } \boldsymbol{x} \in \Omega \text { and } \boldsymbol{y}, \boldsymbol{z} \in \mathbb{R}^{d} .
\end{gathered}
$$

with

$$
\operatorname{dist}(u, v)=\|\nabla(u-v)\|
$$

Class 1: gradient-dependent diffusivity problems
For all $\varphi \in H_{0}^{1}(\Omega), \mathcal{R}: H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)$ is defined as

$$
\langle\mathcal{R}(u), \varphi\rangle:=\langle f(\boldsymbol{x}, u), \varphi\rangle-(\sigma(x, \nabla u), \nabla \varphi)
$$

Assumption 1 is satisfied if $f(\boldsymbol{x}, \cdot), \boldsymbol{\sigma}(\boldsymbol{x}, \cdot)$ are monotone and Lipschitz

$$
\begin{gathered}
(\sigma(\boldsymbol{x}, \boldsymbol{y})-\boldsymbol{\sigma}(\boldsymbol{x}, \boldsymbol{z})) \cdot(\boldsymbol{y}-\boldsymbol{z}) \geq \lambda_{\mathrm{m}}|\boldsymbol{y}-\boldsymbol{z}|^{2} \quad \text { for } \boldsymbol{x} \in \Omega \text { and } \boldsymbol{y}, \boldsymbol{z} \in \mathbb{R}^{d}, \\
|\sigma(\boldsymbol{x}, \boldsymbol{y})-\sigma(\boldsymbol{x}, \boldsymbol{z})| \leq \lambda_{\mathrm{M}}|\boldsymbol{y}-\boldsymbol{z}| \quad \text { for } \boldsymbol{x} \in \Omega \text { and } \boldsymbol{y}, \boldsymbol{z} \in \mathbb{R}^{d} .
\end{gathered}
$$

with

$$
\operatorname{dist}(u, v)=\|\nabla(u-v)\|
$$

Example (Mean curvature flow) For $a(\cdot)$ satisfying ellipticity condition and $b(\cdot)>0: \sigma(\boldsymbol{x}, \boldsymbol{y})=a(\boldsymbol{x})+\frac{b(x) \boldsymbol{y}}{\left(1+|\boldsymbol{y}|^{2}\right)^{\frac{1}{2}}}$

Linearization operator
Considering the linearization operator

$$
\mathfrak{L}\left(u_{\ell}^{i} ; v, w\right):=\left(L\left(\boldsymbol{x}, u_{\ell}^{i}\right) v, w\right)+\left(\mathfrak{a}\left(\boldsymbol{x}, u_{\ell}^{i}\right) \nabla v, \nabla w\right),
$$

the coefficient functions for commonly used linearization schemes are

Scheme	$L(\boldsymbol{x}, v)$	$\mathfrak{a}(\boldsymbol{x}, v) / \tau$
Kačanov (fixed point)	$\partial_{\xi} f(\boldsymbol{x}, v)$	$A(\boldsymbol{x},\|\nabla v\|)$
Zarantonello	0	$\Lambda($ constant $)>0$

Class 2: gradient-independent diffusivity problems
For all $\varphi \in H_{0}^{1}(\Omega), \mathcal{R}: H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)$ is defined as

$$
\langle\mathcal{R}(u), \varphi\rangle:=\langle f(\boldsymbol{x}, u), \varphi\rangle-\tau(\overline{\mathbf{K}}(\boldsymbol{x})(\mathcal{D}(\boldsymbol{x}, u) \nabla u+\boldsymbol{q}(\boldsymbol{x}, u)), \nabla \varphi)
$$

\triangle UHASSELT FWO

Class 2: gradient-independent diffusivity problems
For all $\varphi \in H_{0}^{1}(\Omega), \mathcal{R}: H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)$ is defined as

$$
\langle\mathcal{R}(u), \varphi\rangle:=\langle f(\boldsymbol{x}, u), \varphi\rangle-\tau(\overline{\mathbf{K}}(\boldsymbol{x})(\mathcal{D}(\boldsymbol{x}, u) \nabla u+\boldsymbol{q}(\boldsymbol{x}, u)), \nabla \varphi)
$$

Assumption 1 is satisfied if $\tau>0$ is small and

- $\mathcal{D}: \Omega \times \mathbb{R} \rightarrow \mathbb{R}^{+}$is bounded and Lipschitz
- $\overline{\mathrm{K}}: \Omega \rightarrow \mathbb{R}^{d \times d}$ is symmetric positive definite
- $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is monotone and Lipschitz upto the boundary
- $\boldsymbol{q}: \Omega \times \mathbb{R} \rightarrow \mathbb{R}^{d}$ is bounded and satisfies a Lipschitz condition* with

$$
\operatorname{dist}(u, v)=\left\|\overline{\mathbf{K}}^{\frac{1}{2}} \nabla \int_{u}^{v} \mathcal{D}\right\|
$$

Class 2: gradient-independent diffusivity problems
For all $\varphi \in H_{0}^{1}(\Omega), \mathcal{R}: H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)$ is defined as

$$
\langle\mathcal{R}(u), \varphi\rangle:=\langle f(\boldsymbol{x}, u), \varphi\rangle-\tau(\overline{\mathbf{K}}(\boldsymbol{x})(\mathcal{D}(\boldsymbol{x}, u) \nabla u+\boldsymbol{q}(\boldsymbol{x}, u)), \nabla \varphi)
$$

Semilinear equations $-\Delta u=f(\boldsymbol{x}, u)$
Such equations pop up in quantum mechanics (special solutions to nonlinear Klein-Gordon equations), gravitation influences on stars, membrane buckling problems...

Time-discrete nonlinear advection-reaction-diffusion equations
with time-step $\tau>0$, the following evolutions equations reduce to this case poro-Fischer equations: $\quad \partial_{t} u=\Delta u^{m}+\lambda u(1-u)$
the Richards equation: $\quad \partial_{t} S(u)=\nabla \cdot[\overline{\mathbf{K}}(\boldsymbol{x}) \kappa(S(u))(\nabla u+\boldsymbol{g})]+f(\boldsymbol{x}, u)$
biofilm equations: $\quad \partial_{t} u_{k}=\mu_{k} \Delta \Phi_{k}\left(u_{k}\right)+f_{k}\left(\left(u_{k}\right)_{k=1}^{n}\right)$

Abstract linearization
Considering the linearization operator

$$
\mathfrak{L}\left(u_{\ell}^{i} ; v, w\right):=\left(L\left(\boldsymbol{x}, u_{\ell}^{i}\right) v, w\right)+\left(\mathfrak{a}\left(\boldsymbol{x}, u_{\ell}^{i}\right) \nabla v, \nabla w\right),
$$

the coefficient functions for commonly used linearization schemes are

Scheme	$L(\boldsymbol{x}, v)$	$\mathfrak{a}(\boldsymbol{x}, v) / \tau$
Picard (fixed point)	$\partial_{\xi} f(\boldsymbol{x}, v)$	$\overline{\mathbf{K}}(\boldsymbol{x}) \mathcal{D}(\boldsymbol{x}, v)$
Jäger-Kačur	$\max _{\xi \in \mathbb{R}}\left(\frac{f(x, \xi)-f(\boldsymbol{x}, v)}{\xi-v}\right)$	$\overline{\mathbf{K}}(\boldsymbol{x}) \mathcal{D}(\boldsymbol{x}, v)$
L-scheme	$L($ constant $) \geq \frac{1}{2} \sup \partial_{\xi} f$	$\overline{\mathbf{K}}(\boldsymbol{x}) \mathcal{D}(\boldsymbol{x}, v)$
M-scheme	$\partial_{\xi} f(\boldsymbol{x}, v)+M \tau($ constant $)$	$\overline{\mathbf{K}}(\boldsymbol{x}) \mathcal{D}(\boldsymbol{x}, v)$

Abstract linearization
Considering the linearization operator

$$
\mathfrak{L}\left(u_{\ell}^{i} ; v, w\right):=\left(L\left(\boldsymbol{x}, u_{\ell}^{i}\right) v, w\right)+\left(\mathfrak{a}\left(\boldsymbol{x}, u_{\ell}^{i}\right) \nabla v, \nabla w\right),
$$

the coefficient functions for commonly used linearization schemes are

Scheme	$L(\boldsymbol{x}, v)$	$\mathfrak{a}(\boldsymbol{x}, v) / \tau$
Picard (fixed point)	$\partial_{\xi} f(\boldsymbol{x}, v)$	$\overline{\mathbf{K}}(\boldsymbol{x}) \mathcal{D}(\boldsymbol{x}, v)$
Jäger-Kačur	$\max _{\xi \in \mathbb{R}}\left(\frac{f(\boldsymbol{x}, \xi)-f(\boldsymbol{x}, v)}{\xi-v}\right)$	$\overline{\mathbf{K}}(\boldsymbol{x}) \mathcal{D}(\boldsymbol{x}, v)$
L-scheme	$L($ constant $) \geq \frac{1}{2} \sup \partial_{\xi} f$	$\overline{\mathbf{K}}(\boldsymbol{x}) \mathcal{D}(\boldsymbol{x}, v)$
M-scheme	$\partial_{\xi} f(\boldsymbol{x}, v)+M \tau($ constant $)$	$\overline{\mathbf{K}}(\boldsymbol{x}) \mathcal{D}(\boldsymbol{x}, v)$

- Newton scheme leads to a non-symmetric \mathfrak{L} and is treated separately
(1) Introduction: nonlinear elliptic problems
(2) Main analytical results
(3) Scope of the results
(4) Numerical results

Gradient-independent diffusivity Gradient independent diffusivity case The Newton scheme
(5) Nonlinear parabolic problems
\triangle UHASSELT FWO

4 Adaptive linearization \& effectivity of estimates

Effectivity indices
Global effectivity index: Eff. Ind. $:=\eta_{\Omega}^{i} /\left\|\mathcal{R}\left(u_{\ell}^{i}\right)\right\| \|_{-1, u_{\ell}^{i}}$
Local effectivity index: (Eff. Ind. $)_{K}:=\eta_{K}^{i} /\left\|\mathcal{R}\left(u_{\ell}^{i}\right)\right\| \|_{-1, u_{\ell}^{i}, K}, \quad K \in \mathcal{T}_{\ell}$,

4 Gradient-independent diffusivity case: the Richards equation 114

$$
\begin{aligned}
& \text { For } \Omega=(0,1) \times(0,1) \text { we study } \\
& \qquad \begin{array}{r}
\left\langle\mathcal{R}\left(u_{\ell}\right), \varphi\right\rangle=\left(S(\bar{u})-S\left(u_{\ell}\right), \varphi\right) \\
-\tau\left(\overline{\mathbf{K}} \kappa\left(S\left(u_{\ell}\right)\right)\left[\nabla u_{\ell}-\boldsymbol{g}\right], \nabla \varphi\right)
\end{array}
\end{aligned}
$$

where the van Genuchten parametrization for S, κ is used:

\triangle UHASSELT FWO

4 Robustness with respect to $\lambda_{\mathrm{M}} / \lambda_{\mathrm{m}}$ represented by $1 / \tau$

\triangle UHASSELT SWO

4 Global effectivity

Picard $\tau=0.01$

M-Scheme $\tau=0.01$

L-Scheme $\tau=0.01$

4 Distribution of error vs. estimates

Error

Error MS $\mathrm{l}=2, \tau=0.01, \mathrm{i}=5$ Isovalue

Estimate

Adaptive iteration stopping criteria:

$$
\eta_{\operatorname{lin}, \Omega}^{i} \leq 0.05\left[\eta_{\Omega}^{i}\right] .
$$

4 Gradient independent diffusivity case
We consider in Ω the equation

$$
\varepsilon u-\nabla \cdot[A(|\nabla u|) \nabla u]=f
$$

where

$$
A(\boldsymbol{y})=2+\frac{\boldsymbol{y}}{\left(1+|\boldsymbol{y}|^{2}\right)},
$$

$\varepsilon=10^{-2}$, and a singular $f \in$ $H^{-1}(\Omega)$ is chosen such that the solution becomes

$$
u_{\text {exact }}=r^{\frac{4}{7}} \cos \left(\frac{4}{7} \theta\right)
$$

4 Global effectivity and distribution of error

4 Local effectivity

For the Newton scheme, the linearization operator

$$
\mathfrak{L}\left(u_{\ell}^{i} ; v, w\right):=\left(L\left(\boldsymbol{x}, u_{\ell}^{i}\right) v, w\right)+\left(\mathfrak{a}\left(\boldsymbol{x}, u_{\ell}^{i}\right) \nabla v, \nabla w\right)+\left(\boldsymbol{w}\left(\boldsymbol{x}, u_{\ell}^{i}\right) v, \nabla w\right),
$$

is non-symmetric.

For the Newton scheme, the linearization operator

$$
\mathfrak{L}\left(u_{\ell}^{i} ; v, w\right):=\left(L\left(\boldsymbol{x}, u_{\ell}^{i}\right) v, w\right)+\left(\mathfrak{a}\left(\boldsymbol{x}, u_{\ell}^{i}\right) \nabla v, \nabla w\right)+\left(\boldsymbol{w}\left(\boldsymbol{x}, u_{\ell}^{i}\right) v, \nabla w\right)
$$

is non-symmetric. However, if for some $C_{N} \in[0,2)$ we have

$$
\boldsymbol{w}\left(\boldsymbol{x}, u_{\ell}^{i}\right) \mathfrak{a}^{-1}\left(\boldsymbol{x}, u_{\ell}^{i}\right) \boldsymbol{w}\left(\boldsymbol{x}, u_{\ell}^{i}\right) \leq C_{N}^{2} L\left(\boldsymbol{x}, u_{\ell}^{i}\right), \quad \forall \boldsymbol{x} \in \Omega, \text { and } i \in \mathbb{N},
$$

For the Newton scheme, the linearization operator

$$
\mathfrak{L}\left(u_{\ell}^{i} ; v, w\right):=\left(L\left(\boldsymbol{x}, u_{\ell}^{i}\right) v, w\right)+\left(\mathfrak{a}\left(\boldsymbol{x}, u_{\ell}^{i}\right) \nabla v, \nabla w\right)+\left(\boldsymbol{w}\left(\boldsymbol{x}, u_{\ell}^{i}\right) v, \nabla w\right)
$$

is non-symmetric. However, if for some $C_{N} \in[0,2)$ we have

$$
\boldsymbol{w}\left(\boldsymbol{x}, u_{\ell}^{i}\right) \mathfrak{a}^{-1}\left(\boldsymbol{x}, u_{\ell}^{i}\right) \boldsymbol{w}\left(\boldsymbol{x}, u_{\ell}^{i}\right) \leq C_{N}^{2} L\left(\boldsymbol{x}, u_{\ell}^{i}\right), \quad \forall \boldsymbol{x} \in \Omega, \text { and } i \in \mathbb{N},
$$

then,

$$
\begin{gathered}
C_{\mathrm{m}}\left(C_{N}\right)\left[\left\|\mathcal{R}_{\operatorname{lin}}^{u^{i}}\left(u_{\ell}^{i+1}\right)\right\|_{-1, u_{\ell}^{i}}^{2}+\| \| u_{\ell}^{i+1}-u_{\ell}^{i} \|_{1, u_{\ell}^{i}}^{2}\right] \leq\left\|\mathcal{R}\left(u_{\ell}^{i}\right)\right\|_{-1, u_{\ell}^{i}}^{2} \\
\leq C_{\mathrm{M}}\left(C_{N}\right)\left[\left\|\mathcal{R}_{\operatorname{lin}}^{u_{\ell}^{i}}\left(u_{\ell}^{i+1}\right)\right\|_{-1, u_{\ell}^{i}}^{2}+\left\|u_{\ell}^{i+1}-u_{\ell}^{i}\right\|_{1, u_{\ell}^{i}}^{2}\right]
\end{gathered}
$$

with $C_{\mathrm{m}}\left(C_{N}\right), C_{\mathrm{M}}\left(C_{N}\right) \rightarrow 1$ if $C_{N} \searrow 0$.

For gradient independent diffusivity case, we have

\triangle UHASSELT SWO
(1) Introduction: nonlinear elliptic problems
(2) Main analytical results
(3) Scope of the results
(4) Numerical results
(5) Nonlinear parabolic problems

Nonlinear advection-reaction-diffusion equation
Analytical properties
Error-residual relationship
A posteriori estimation
Numerical results
\square UHASSELT FWO

Richards equation: modelling flow of water through soil

$$
\partial_{t} S(p)=\nabla \cdot\left[\overline{\mathbf{K}}_{\kappa}(S(p))(\nabla p+\boldsymbol{g})\right]+f(S(p), \boldsymbol{x}, t)
$$

p is pressure, $s:=S(p)$ is saturation

Richards equation: modelling flow of water through soil

$$
\partial_{t} S(p)=\nabla \cdot\left[\overline{\mathbf{K}}_{\kappa}(S(p))(\nabla p+\boldsymbol{g})\right]+f(S(p), \boldsymbol{x}, t)
$$

p is pressure, $s:=S(p)$ is saturation

- Obtained from combining mass balance

$$
\partial_{t} s+\nabla \cdot \boldsymbol{\sigma}=f(s, \boldsymbol{x}, t)
$$

Richards equation: modelling flow of water through soil

$$
\partial_{t} S(p)=\nabla \cdot\left[\overline{\mathbf{K}}_{\kappa}(S(p))(\nabla p+\boldsymbol{g})\right]+f(S(p), \boldsymbol{x}, t)
$$

p is pressure, $s:=S(p)$ is saturation

- Obtained from combining mass balance

$$
\partial_{t} s+\nabla \cdot \boldsymbol{\sigma}=f(s, \boldsymbol{x}, t)
$$

- the Darcy Law

$$
\boldsymbol{\sigma}=-\overline{\mathbf{K}}_{\kappa(s)}(\nabla p+\boldsymbol{g}),
$$

Richards equation: modelling flow of water through soil

$$
\partial_{t} S(p)=\nabla \cdot\left[\overline{\mathbf{K}}_{\kappa} \kappa(S(p))(\nabla p+\boldsymbol{g})\right]+f(S(p), \boldsymbol{x}, t)
$$

Function properties

- $S \in \operatorname{Lip}(\mathbb{R})$ is increasing in $\left(-\infty, p_{\mathrm{M}}\right), S(-\infty)=0$ and

$$
S^{\prime}(p)=0, S(p)=1 \text { for all } p>p_{\mathrm{M}}
$$

- $\kappa \in C^{1}([0,1])$ is increasing with $\kappa(0) \geq 0$ and $\kappa(1)=1$.

5 Nonlinear advection-reaction-diffusion equation

Richards equation: modelling flow of water through soil

$$
\partial_{t} S(p)=\nabla \cdot\left[\overline{\mathbf{K}}_{\kappa}(S(p))(\nabla p+\boldsymbol{g})\right]+f(S(p), \boldsymbol{x}, t)
$$

Function properties

- $S \in \operatorname{Lip}(\mathbb{R})$ is increasing in $\left(-\infty, p_{\mathrm{M}}\right), S(-\infty)=0$ and

$$
S^{\prime}(p)=0, S(p)=1 \text { for all } p>p_{\mathrm{M}}
$$

- $\kappa \in C^{1}([0,1])$ is increasing with $\kappa(0) \geq 0$ and $\kappa(1)=1$.
- $\overline{\mathrm{K}}: \Omega \mapsto \mathbb{R}^{d \times d}$ is piece-wise constant in Ω, bounded, symmetric positive definite, and satisfies the ellipticity condition,

$$
K_{\mathrm{m}}|\boldsymbol{\zeta}|^{2} \leq \boldsymbol{\zeta}^{\mathrm{T}} \overline{\mathbf{K}} \boldsymbol{\zeta} \leq K_{\mathrm{M}}|\boldsymbol{\zeta}|^{2}, \quad \forall \zeta \in \mathbb{R}^{d} /\{0\} .
$$

5 Nonlinear advection-reaction-diffusion equation

Richards equation: modelling flow of water through soil

$$
\partial_{t} S(p)=\nabla \cdot\left[\overline{\mathbf{K}}_{\kappa}(S(p))(\nabla p+\boldsymbol{g})\right]+f(S(p), \boldsymbol{x}, t)
$$

Function properties

- $S \in \operatorname{Lip}(\mathbb{R})$ is increasing in $\left(-\infty, p_{\mathrm{M}}\right), S(-\infty)=0$ and

$$
S^{\prime}(p)=0, S(p)=1 \text { for all } p>p_{\mathrm{M}}
$$

- $\kappa \in C^{1}([0,1])$ is increasing with $\kappa(0) \geq 0$ and $\kappa(1)=1$.
- $\overline{\mathrm{K}}: \Omega \mapsto \mathbb{R}^{d \times d}$ is piece-wise constant in Ω, bounded, symmetric positive definite, and satisfies the ellipticity condition,

$$
K_{\mathrm{m}}|\boldsymbol{\zeta}|^{2} \leq \boldsymbol{\zeta}^{\mathrm{T}} \overline{\mathbf{K}} \boldsymbol{\zeta} \leq K_{\mathrm{M}}|\boldsymbol{\zeta}|^{2}, \quad \forall \zeta \in \mathbb{R}^{d} /\{0\} .
$$

- $f \in C^{1}([0,1] \times \Omega \times \mathbb{R})$.

Richards Equation: modelling flow of water through soil

$$
\partial_{t} S(p)=\nabla \cdot\left[\overline{\mathbf{K}}_{\kappa}(S(p))(\nabla p+\boldsymbol{g})\right]+f(S(p), \boldsymbol{x}, t)
$$

Main Challenges
1 Nonlinearity Ω
2 Degeneracy \llbracket

5 Nonlinear advection-reaction-diffusion equation

Richards Equation: modelling flow of water through soil

$$
\partial_{t} S(p)=\nabla \cdot\left[\overline{\mathbf{K}}_{\kappa} \kappa(S(p))(\nabla p+\boldsymbol{g})\right]+f(S(p), \boldsymbol{x}, t)
$$

Main Challenges
1 Nonlinearity Ω
2 Degeneracy $\boxed{ }$
> Parabolic-Hyperbolic: at $s=0$ if $\kappa(0)=0$
$\partial_{t} s=f$ or $\partial_{t} s+\nabla \cdot \boldsymbol{F}(s)=f$ for multiphase problems

Richards Equation: modelling flow of water through soil

$$
\partial_{t} S(p)=\nabla \cdot\left[\overline{\mathbf{K}}_{\kappa}(S(p))(\nabla p+\boldsymbol{g})\right]+f(S(p), \boldsymbol{x}, t)
$$

Main Challenges
1 Nonlinearity Ω
2 Degeneracy ■
> Parabolic-Hyperbolic: at $s=0$ if $\kappa(0)=0$
$\partial_{t} s=f$ or $\partial_{t} s+\nabla \cdot \boldsymbol{F}(s)=f$ for multiphase problems
$>$ Parabolic-Elliptic: at $s=1$ since $S^{\prime}(p)=0$ for $p>p_{\mathrm{M}}$ $\nabla \cdot[\overline{\mathbf{K}} \kappa(1)(\nabla p+\boldsymbol{g})]+f(1, \boldsymbol{x}, t)=0$

Richards Equation: modelling flow of water through soil

$$
\partial_{t} S(p)=\nabla \cdot\left[\overline{\mathbf{K}}_{\kappa}(S(p))(\nabla p+\boldsymbol{g})\right]+f(S(p), \boldsymbol{x}, t)
$$

Main Challenges

1 Nonlinearity Ω
2 Degeneracy ■
> Parabolic-Hyperbolic: at $s=0$ if $\kappa(0)=0$
$\partial_{t} s=f$ or $\partial_{t} s+\nabla \cdot \boldsymbol{F}(s)=f$ for multiphase problems
$>$ Parabolic-Elliptic: at $s=1$ since $S^{\prime}(p)=0$ for $p>p_{\mathrm{M}}$

$$
\nabla \cdot[\overline{\mathbf{K}} \kappa(1)(\nabla p+\boldsymbol{g})]+f(1, \boldsymbol{x}, t)=0
$$

3 Solutions lack regularity M

5 Nonlinear advection-reaction-diffusion equation

Richards Equation: modelling flow of water through soil

$$
\partial_{t} S(p)=\nabla \cdot\left[\overline{\mathbf{K}}_{\kappa} \kappa(S(p))(\nabla p+\boldsymbol{g})\right]+f(S(p), \boldsymbol{x}, t)
$$

Main Challenges

1 Nonlinearity Ω
2 Degeneracy 飞
$>$ Parabolic-Hyperbolic: at $s=0$ if $\kappa(0)=0$
$\partial_{t} s=f$ or $\partial_{t} s+\nabla \cdot \boldsymbol{F}(s)=f$ for multiphase problems
$>$ Parabolic-Elliptic: at $s=1$ since $S^{\prime}(p)=0$ for $p>p_{\mathrm{M}}$

$$
\nabla \cdot[\overline{\mathbf{K}} \kappa(1)(\nabla p+\boldsymbol{g})]+f(1, \boldsymbol{x}, t)=0
$$

3 Solutions lack regularity M
Literature: \checkmark [Dolejší et al (2013)][Bernardi et al (2014)][Cancès et al (2014)] [Verfürth (2004)]; $\boxed{\square}$ [Di Pietro et al (2015)]; $\begin{aligned} & \text { [Ohlberger }\end{aligned}$ (2001)]

Pressure formulation

$$
\partial_{t} S(p)=\nabla \cdot\left[\overline{\mathbf{K}}_{\kappa}(S(p))(\nabla p+\boldsymbol{g})\right]+f(S(p), \boldsymbol{x}, t)
$$

Pressure formulation

$$
\partial_{t} S(p)=\nabla \cdot\left[\overline{\mathbf{K}}_{\kappa}(S(p))(\nabla p+\boldsymbol{g})\right]+f(S(p), \boldsymbol{x}, t)
$$

The Kirchhoff transform and some definitions

$$
\mathcal{K}(p)=\int_{0}^{p} \kappa(S(\varrho)) \mathrm{d} \varrho, \quad \theta=S \circ \mathcal{K}^{-1}
$$

5 Alternative formulations

Pressure formulation

$$
\partial_{t} S(p)=\nabla \cdot\left[\overline{\mathbf{K}}_{\kappa}(S(p))(\nabla p+\boldsymbol{g})\right]+f(S(p), \boldsymbol{x}, t)
$$

The Kirchhoff transform and some definitions

$$
\mathcal{K}(p)=\int_{0}^{p} \kappa(S(\varrho)) \mathrm{d} \varrho, \quad \theta=S \circ \mathcal{K}^{-1}
$$

5 Alternative formulations

Pressure formulation

$$
\partial_{t} S(p)=\nabla \cdot\left[\overline{\mathbf{K}}_{\kappa}(S(p))(\nabla p+\boldsymbol{g})\right]+f(S(p), \boldsymbol{x}, t)
$$

The Kirchhoff transform and some definitions

$$
\mathcal{K}(p)=\int_{0}^{p} \kappa(S(\varrho)) \mathrm{d} \varrho, \quad \theta=S \circ \mathcal{K}^{-1}
$$

Total pressure formulation
For $\Psi=\mathcal{K}(p)$,

$$
\partial_{t} \theta(\Psi)=\nabla \cdot[\overline{\mathbf{K}}(\nabla \Psi+\mathcal{K}(\theta(\Psi)) \boldsymbol{g})]+f(\theta(\Psi), \boldsymbol{x}, t)
$$

Weak total pressure formulation

For the initial condition s_{0} bounded in $(0,1]$ a.e., find $\psi \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$, $s=\theta(\Psi) \in H^{1}\left(0, T ; H^{-1}(\Omega)\right), s(0)=s_{0}$ satisying $\forall \varphi \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$,

$$
\int_{0}^{T}\left[\left\langle\partial_{t} s, \varphi\right\rangle+(\overline{\mathbf{K}}[\nabla \Psi+\kappa(s) \boldsymbol{g}], \nabla \varphi)\right]=\int_{0}^{T}(f(s, \boldsymbol{x}, t), \varphi)
$$

Weak total pressure formulation

For the initial condition s_{0} bounded in $(0,1]$ a.e., find $\psi \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$, $s=\theta(\Psi) \in H^{1}\left(0, T ; H^{-1}(\Omega)\right), s(0)=s_{0}$ satisying $\forall \varphi \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$,

$$
\int_{0}^{T}\left[\left\langle\partial_{t} s, \varphi\right\rangle+(\overline{\mathbf{K}}[\nabla \Psi+\kappa(s) \boldsymbol{g}], \nabla \varphi)\right]=\int_{0}^{T}(f(s, \boldsymbol{x}, t), \varphi)
$$

Theorem [Alt \& Luckhaus (1983)][Otto (1991)]
There exists a unique weak solution ψ for the total pressure formulations.

To avoid the parabolic-hyperbolic degeneracy we need $s \geq S_{\mathrm{m}}>0$
\triangle UHASSELT FWO

To avoid the parabolic-hyperbolic degeneracy we need $s \geq S_{\mathrm{m}}>0$

Proposition

If s_{0} is bounded in $[\varepsilon, 1]$ for some $\varepsilon>0$, then there exists saturation lower-bound function $S_{\mathrm{m}}:[0, T] \rightarrow(0,1]$ such that for almost all $(x, t) \in \Omega \times[0, T]$,

$$
s(\boldsymbol{x}, t)=S(p(x, t)) \geq S_{\mathrm{m}}(t)>0
$$

5 Maximum principle

To avoid the parabolic-hyperbolic degeneracy we need $s \geq S_{\mathrm{m}}>0$
Proposition
If s_{0} is bounded in $[\varepsilon, 1]$ for some $\varepsilon>0$, then there exists saturation lower-bound function $S_{\mathrm{m}}:[0, T] \rightarrow(0,1]$ such that for almost all $(x, t) \in \Omega \times[0, T]$,

$$
s(\boldsymbol{x}, t)=S(p(\boldsymbol{x}, t)) \geq S_{\mathrm{m}}(t)>0
$$

Computing S_{m}

For example, under minor restrictions

$$
S_{\mathrm{m}}(t)=\min _{\boldsymbol{x} \in \Omega}\left\{s_{0}(\boldsymbol{x})\right\}+\int_{0}^{t} \min _{x \in \Omega, \varrho>0}\left\{f\left(S_{\mathrm{m}}(\varrho), \boldsymbol{x}, \varrho\right)\right\} \mathrm{d} \varrho
$$

is a saturation lower-bound function.

5 Residual

Residual

For $\Psi_{h \tau} \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right), s_{h \tau}=\theta\left(\Psi_{h \tau}\right) \in H^{1}\left(0, T ; H^{-1}(\Omega)\right)$ the residual $\mathcal{R}\left(\Psi_{h \tau}\right) \in L^{2}\left(0, T ; H^{-1}(\Omega)\right)$ is
$\int_{0}^{T}\left\langle\mathcal{R}\left(\Psi_{h \tau}\right), \varphi\right\rangle=\int_{0}^{T}\left[\left(f\left(s_{h \tau}, \boldsymbol{x}, t\right), \varphi\right)-\left\langle\partial_{t} s_{h \tau}, \varphi\right\rangle-\left(\overline{\mathbf{K}}\left[\nabla \Psi_{h \tau}+\kappa\left(s_{h \tau}\right) \boldsymbol{g}\right], \nabla \varphi\right)\right]$

The $H_{\bar{K}}^{ \pm 1}$ norm
For $\omega \subseteq \Omega$, the following equivalent norms of $H^{ \pm 1}(\omega)$ are defined

$$
\begin{gathered}
\|\varrho\|_{H_{\overline{\mathbf{K}}}^{1}(\omega)}:=\left\|\overline{\mathbf{K}}^{\frac{1}{2}} \nabla \varrho\right\|_{L^{2}(\omega)} \\
\|\varrho\|_{H_{\overline{\mathbf{K}}}^{-1}(\omega)}:=\sup _{\varphi \in H_{0}^{1}(\omega)} \frac{\langle\varrho, \varphi\rangle_{H^{-1}(\omega), H_{0}^{1}(\omega),}}{\|\varphi\|_{H_{\overline{\mathbf{K}}}^{1}(\omega)}}
\end{gathered}
$$

5 Norms

The $H_{\bar{K}}^{ \pm 1}$ norm
For $\omega \subseteq \Omega$, the following equivalent norms of $H^{ \pm 1}(\omega)$ are defined

$$
\begin{gathered}
\|\varrho\|_{H_{\overline{\mathbf{K}}}^{1}(\omega)}:=\left\|\overline{\mathbf{K}}^{\frac{1}{2}} \nabla \varrho\right\|_{L^{2}(\omega)}, \\
\|\varrho\|_{H_{\overline{\mathbf{K}}}^{-1}(\omega)}:=\sup _{\varphi \in H_{0}^{1}(\omega)} \frac{\langle\varrho, \varphi\rangle_{H^{-1}(\omega), H_{0}^{1}(\omega)}}{\|\varphi\|_{H_{\overline{\mathbf{K}}}^{1}(\omega)}} .
\end{gathered}
$$

The equivalent norm of $L^{2}([0, T])$
For $\alpha: \mathbb{R}^{+} \rightarrow[0, \infty)$, a time-smoothened equivalent of $L^{2}([0, T])$-norm is

$$
\mathcal{J}_{\alpha}(\varrho):=\left[\exp \left(-\int_{0}^{T} \alpha\right) \int_{0}^{T}\left(\varrho^{2}(t)+\alpha(t) \exp \left(\int_{t}^{T} \alpha\right) \int_{0}^{t} \varrho^{2}\right) \mathrm{d} t\right]^{\frac{1}{2}}
$$

- The error measure $\left\|\mathcal{R}\left(\Psi_{h \tau}\right)\right\|_{L^{2}\left(0, T ; H_{\bar{k}}^{-1}(\Omega)\right)}$ might again be too weak

5 Error measure

- The error measure $\left\|\mathcal{R}\left(\Psi_{h \tau}\right)\right\|_{L^{2}\left(0, T ; H_{\bar{k}}^{-1}(\Omega)\right)}$ might again be too weak

The error metric
For $\omega \subseteq \Omega$, interval $I \subseteq[0, T]$, and $\alpha: \mathbb{R}^{+} \rightarrow[0, \infty)$, we choose

$$
\begin{aligned}
\operatorname{dist}_{\omega, l}^{\alpha}\left(\Psi_{1}, \Psi_{2}\right) & :=\left\|\Psi_{1}-\Psi_{2}\right\|_{L^{2}\left(I, H_{\bar{k}}^{1}(\omega)\right)} \\
& +\left\|\alpha\left(\theta\left(\Psi_{1}\right)-\theta\left(\Psi_{2}\right)\right)\right\|_{L^{2}(\omega \times I)} \\
& +\left\|\partial_{t}\left(\theta\left(\Psi_{1}\right)-\theta\left(\Psi_{2}\right)\right)\right\|_{L^{2}\left(l ; H_{\bar{K}}^{-1}(\omega)\right)} .
\end{aligned}
$$

*In the linear case, $\alpha=0$

Theorem 3 (a)
For a time-interval $I \in[0, T], \omega \subseteq \Omega$, and arbitrary $\Psi_{h \tau} \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$ with $\theta\left(\Psi_{h \tau}\right) \in H^{1}\left(0, T ; H^{-1}(\Omega)\right)$ we have

$$
\left\|\mathcal{R}\left(\Psi_{h \tau}\right)\right\|_{L^{2}\left(!; H_{\bar{k}}^{-1}(\omega)\right)} \leq \operatorname{dist}_{\omega, I}^{\alpha}\left(\Psi, \Psi_{h \tau}\right) .
$$

Theorem 3 (a)
For a time-interval $I \in[0, T], \omega \subseteq \Omega$, and arbitrary $\Psi_{h \tau} \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$ with $\theta\left(\Psi_{h \tau}\right) \in H^{1}\left(0, T ; H^{-1}(\Omega)\right)$ we have

$$
\left\|\mathcal{R}\left(\Psi_{h \tau}\right)\right\|_{L^{2}\left(I ; H_{\bar{k}}^{-1}(\omega)\right)} \leq \operatorname{dist}_{\omega, I}^{\alpha}\left(\Psi, \Psi_{h \tau}\right)
$$

proof: Use triangle inequality for the norm $\|\cdot\|_{L^{2}\left(l ; H_{\bar{k}}^{-1}(\omega)\right)}$

Additional quantities

- For $C_{h \tau}^{\infty}(t):=\left\|\overline{\mathbf{K}}^{\frac{1}{2}} \nabla s_{h \tau}(t)\right\|_{L^{\infty}(\Omega)}^{2}$, assume that $\int_{0}^{T} C_{h \tau}^{\infty}(t) \mathrm{d} t<\infty$.

Additional quantities

- For $C_{h \tau}^{\infty}(t):=\left\|\overline{\mathbf{K}}^{\frac{1}{2}} \nabla s_{h \tau}(t)\right\|_{L^{\infty}(\Omega)}^{2}$, assume that $\int_{0}^{T} C_{h \tau}^{\infty}(t) \mathrm{d} t<\infty$.
- Parabolic-hyperbolic degeneracy

Assume that $s(t) \geq S_{\mathrm{m}}(t)>0$ a.e. in Ω for $t>0$.

Additional quantities

- For $C_{h \tau}^{\infty}(t):=\left\|\overline{\mathbf{K}}^{\frac{1}{2}} \nabla s_{h \tau}(t)\right\|_{L^{\infty}(\Omega)}^{2}$, assume that $\int_{0}^{T} C_{h \tau}^{\infty}(t) \mathrm{d} t<\infty$.
- Parabolic-hyperbolic degeneracy

Assume that $s(t) \geq S_{\mathrm{m}}(t)>0$ a.e. in Ω for $t>0$.

- Parabolic-elliptic degeneracy

For $\Omega^{\text {deg }} \supseteq\{s=1\} \cup\left\{s_{h \tau}=1\right\}$ we define

$$
\begin{aligned}
\eta^{\operatorname{deg}}(t):=\sqrt{\frac{2}{D(1)}} & {\left[\left\|\left[\Psi_{h \tau}(t)-P_{\mathrm{M}}\right]_{+}\right\|_{{\mu_{\bar{K}}^{1}}_{2}(\Omega)}^{2}+\left\|[f(1, \boldsymbol{x}, t)]_{+}\right\|_{H_{\bar{K}}^{-1}\left(\Omega^{\operatorname{deg}}(t)\right)}\right.} \\
& \left.\left.+\left\|\left(\overline{\mathbf{K}}^{\frac{1}{2}}-\frac{\overline{\mathbf{K}}^{-\frac{1}{2}}}{\Omega^{\operatorname{deg}}(t) \mid} \int_{\Omega^{\operatorname{deg}}(t)} \overline{\mathbf{K}}\right) \boldsymbol{g}\right\|_{\Omega^{\operatorname{deg} g}(t)}\right)^{2}\right]^{\frac{1}{2}}
\end{aligned}
$$

Theorem 3 (b)
Estimate in the $L^{2}(\Omega \times[0, T])$ norm:
$\mathcal{J}_{\mathfrak{C}_{1}}\left(\underline{\lambda}_{1}\left\|s-s_{h \tau}\right\|\right)^{2}$
$\leq\left\|s_{0}-s_{h \tau}(0)\right\|_{H_{\bar{k}}^{-1}(\Omega)}^{2}+\mathcal{J}_{\mathcal{C}_{1}}\left(\bar{\lambda}_{1}\left\|\mathcal{R}\left(\Psi_{h \tau}\right)\right\|_{H_{\overline{\mathrm{K}}}^{-1}(\Omega)}\right)^{2}$,

Theorem 3 (b)
Estimate in the $L^{2}(\Omega \times[0, T])$ norm:
$\mathcal{J}_{\mathfrak{C}_{1}}\left(\underline{\lambda}_{1}\left\|s-s_{h \tau}\right\|\right)^{2}$
$\leq\left\|s_{0}-s_{h \tau}(0)\right\|_{H_{\bar{k}}^{-1}(\Omega)}^{2}+\mathcal{J}_{\mathcal{C}_{1}}\left(\bar{\lambda}_{1}\left\|\mathcal{R}\left(\Psi_{h \tau}\right)\right\|_{H_{\overline{\mathrm{K}}}^{-1}(\Omega)}\right)^{2}$,
Estimate in the $L^{2}\left(0, T ; H^{1}(\Omega)\right)$ norm:
$\frac{1}{2} \mathcal{J}_{\mathfrak{C}_{2}}\left(\lambda_{2}\left\|\Psi-\Psi_{h \tau}\right\|_{H_{\bar{K}}(\Omega)}\right)^{2}$
$\leq\left\|s_{0}-s_{h \tau}(0)\right\|^{2}+\mathcal{J}_{\mathfrak{C}_{2}}\left(\eta^{\mathrm{deg}}\right)^{2}+4 \mathcal{J}_{\mathfrak{C}_{2}}\left(\bar{\lambda}_{2}\left\|\mathcal{R}\left(\Psi_{h \tau}\right)\right\|_{H_{\bar{k}}^{-1}(\Omega)}\right)^{2}$.

5 Global reliability

Theorem 3 (b)
Estimate in the $L^{2}(\Omega \times[0, T])$ norm:
$\mathcal{J}_{\mathcal{C}_{1}}\left(\underline{\lambda}_{1}\left\|s-s_{h T}\right\|\right)^{2}$
$\leq\left\|s_{0}-s_{h \tau}(0)\right\|_{H_{\bar{K}}^{-1}(\Omega)}^{2}+\mathcal{J}_{\mathfrak{C}_{1}}\left(\bar{\lambda}_{1}\left\|\mathcal{R}\left(\Psi_{h \tau}\right)\right\|_{H_{\overline{\mathrm{K}}}^{-1}(\Omega)}\right)^{2}$,
Estimate in the $L^{2}\left(0, T ; H^{1}(\Omega)\right)$ norm:
$\frac{1}{2} \mathcal{J}_{\mathcal{C}_{2}}\left(\lambda_{2}\left\|\Psi-\Psi_{h \tau}\right\|_{H_{\bar{K}}^{1}(\Omega)}\right)^{2}$
$\leq\left\|s_{0}-s_{h \tau}(0)\right\|^{2}+\mathcal{J}_{\mathfrak{C}_{2}}\left(\eta^{\mathrm{deg}}\right)^{2}+4 \mathcal{J}_{\mathfrak{C}_{2}}\left(\bar{\lambda}_{2}\left\|\mathcal{R}\left(\Psi_{h \tau}\right)\right\|_{H_{\bar{k}}^{-1}(\Omega)}\right)^{2}$.
*Similar expression holds for the $\left\|\partial_{t}\left(\theta\left(\Psi_{1}\right)-\theta\left(\Psi_{2}\right)\right)\right\|_{L^{2}\left(l ; H_{\bar{k}}^{-1}(\Omega)\right)}$ error component

5 Global reliability

Theorem 3 (b)
Estimate in the $L^{2}(\Omega \times[0, T])$ norm:
$\mathcal{J}_{\mathcal{C}_{1}}\left(\underline{\lambda}_{1}\left\|s-s_{h T}\right\|\right)^{2}$
$\leq\left\|s_{0}-s_{h \tau}(0)\right\|_{H_{\bar{K}}^{-1}(\Omega)}^{2}+\mathcal{J}_{\mathfrak{C}_{1}}\left(\bar{\lambda}_{1}\left\|\mathcal{R}\left(\Psi_{h \tau}\right)\right\|_{H_{\overline{\mathrm{K}}}^{-1}(\Omega)}\right)^{2}$,
Estimate in the $L^{2}\left(0, T ; H^{1}(\Omega)\right)$ norm:
$\frac{1}{2} \mathcal{J}_{\mathcal{C}_{2}}\left(\lambda_{2}\left\|\Psi-\Psi_{h \tau}\right\|_{H_{\bar{K}}^{1}(\Omega)}\right)^{2}$
$\leq\left\|s_{0}-s_{h \tau}(0)\right\|^{2}+\mathcal{J}_{\mathfrak{C}_{2}}\left(\eta^{\mathrm{deg}}\right)^{2}+4 \mathcal{J}_{\mathfrak{C}_{2}}\left(\bar{\lambda}_{2}\left\|\mathcal{R}\left(\Psi_{h \tau}\right)\right\|_{H_{\bar{k}}^{-1}(\Omega)}\right)^{2}$.
Similar expression holds for the $\left\|\partial_{t}\left(\theta\left(\Psi_{1}\right)-\theta\left(\Psi_{2}\right)\right)\right\|_{L^{2}\left(I ; H_{\overline{\mathrm{K}}}^{-1}(\Omega)\right)}$ error component ${ }^{ *}$ In the linear case $\mathfrak{C}_{1}=\mathfrak{C}_{2}=0$

- Let $\left\{t_{0}:=0, t_{1}, \ldots, t_{N}:=T\right\}$ be the time-discretization, with $\tau_{n}:=t_{n}-t_{n-1}$, and $I_{n}:=\left(t_{n-1}, t_{n}\right]$
- Let $\left\{t_{0}:=0, t_{1}, \ldots, t_{N}:=T\right\}$ be the time-discretization, with $\tau_{n}:=t_{n}-t_{n-1}$, and $I_{n}:=\left(t_{n-1}, t_{n}\right]$
- Let $\left\{\mathcal{T}_{n}\right\}_{n=1}^{N}$ be a sequence of triangulations and $\left\{V_{n, h}\right\}_{n=1}^{N}$ the corresponding finite element spaces

5 Finite element solution

- Let $\left\{t_{0}:=0, t_{1}, \ldots, t_{N}:=T\right\}$ be the time-discretization, with $\tau_{n}:=t_{n}-t_{n-1}$, and $I_{n}:=\left(t_{n-1}, t_{n}\right]$
- Let $\left\{\mathcal{T}_{n}\right\}_{n=1}^{N}$ be a sequence of triangulations and $\left\{V_{n, h}\right\}_{n=1}^{N}$ the corresponding finite element spaces
- Let $\left\{p_{n, h} \in V_{n, h}\right\}_{n=1}^{N}$ be the sequence of finite elements solutions for backward Euler time discretization of the pressure formulation, i.e.,

$$
\begin{gathered}
\left(\frac{1}{\tau_{n}}\left(S\left(p_{n, h}\right)-S\left(p_{n-1, h}\right)\right), \nabla \varphi_{h}\right)+\left(\overline{\mathbf{K}}_{\kappa}\left(S\left(p_{n, h}\right)\right)\left[\nabla p_{n, h}+\boldsymbol{g}\right], \varphi_{h}\right) \\
=\left(f\left(S\left(p_{n, h}\right), \boldsymbol{x}, t_{n}\right), \varphi_{h}\right), \quad \forall \varphi_{h} \in V_{n, h} .
\end{gathered}
$$

5 Finite element solution

- Let $\left\{t_{0}:=0, t_{1}, \ldots, t_{N}:=T\right\}$ be the time-discretization, with $\tau_{n}:=t_{n}-t_{n-1}$, and $I_{n}:=\left(t_{n-1}, t_{n}\right]$
- Let $\left\{\mathcal{T}_{n}\right\}_{n=1}^{N}$ be a sequence of triangulations and $\left\{V_{n, h}\right\}_{n=1}^{N}$ the corresponding finite element spaces
- Let $\left\{p_{n, h} \in V_{n, h}\right\}_{n=1}^{N}$ be the sequence of finite elements solutions for backward Euler time discretization of the pressure formulation, i.e.,

$$
\begin{aligned}
\left(\frac { 1 } { \tau _ { n } } \left(S\left(p_{n, h}\right)\right.\right. & \left.\left.-S\left(p_{n-1, h}\right)\right), \nabla \varphi_{h}\right)+\left(\overline{\mathbf{K}} \kappa\left(S\left(p_{n, h}\right)\right)\left[\nabla p_{n, h}+\boldsymbol{g}\right], \varphi_{h}\right) \\
& =\left(f\left(S\left(p_{n, h}\right), \boldsymbol{x}, t_{n}\right), \varphi_{h}\right), \quad \forall \varphi_{h} \in V_{n, h} .
\end{aligned}
$$

- Define the time-discrete total pressure and saturation as

$$
\Psi_{n, h}:=\mathcal{K}\left(p_{n, h}\right) \text { and } s_{n, h}:=S\left(p_{n, h}\right)=\theta\left(\Psi_{n, h}\right) .
$$

- Define the time-discrete total pressure and saturation as

$$
\psi_{n, h}:=\mathcal{K}\left(p_{n, h}\right) \text { and } s_{n, h}:=S\left(p_{n, h}\right)=\theta\left(\psi_{n, h}\right) .
$$

- Define the time-discrete total pressure and saturation as

$$
\psi_{n, h}:=\mathcal{K}\left(p_{n, h}\right) \text { and } s_{n, h}:=S\left(p_{n, h}\right)=\theta\left(\psi_{n, h}\right) .
$$

- Let $\psi_{h \tau} \in C\left(0, T ; H^{1}(\Omega)\right)$ with $s_{h \tau} \in W^{1, \infty}\left(0, T ; L^{2}(\Omega)\right)$ be their time-continuous interpolations, i.e., they satisfy

$$
\Psi_{h \tau}\left(t_{n}\right)=\Psi_{n, h}, \quad s_{h \tau}\left(t_{n}\right)=s_{n, h}
$$

\triangle UHASSELT FWO

- Define the time-discrete total pressure and saturation as

$$
\psi_{n, h}:=\mathcal{K}\left(p_{n, h}\right) \text { and } s_{n, h}:=S\left(p_{n, h}\right)=\theta\left(\psi_{n, h}\right) .
$$

- Let $\psi_{h \tau} \in C\left(0, T ; H^{1}(\Omega)\right)$ with $S_{h \tau} \in W^{1, \infty}\left(0, T ; L^{2}(\Omega)\right)$ be their time-continuous interpolations, i.e., they satisfy

$$
\Psi_{h \tau}\left(t_{n}\right)=\psi_{n, h}, \quad s_{h \tau}\left(t_{n}\right)=s_{n, h} .
$$

- We introduce the a posteriori estimator $\eta_{\Omega}:[0, T] \rightarrow[0, \infty)$,

$$
\left\|\mathcal{R}\left(\Psi_{h \tau}(t)\right)\right\|_{H_{\bar{k}}^{-1}(\Omega)} \leq \eta_{\Omega}(t), \quad \forall t \in[0, T] .
$$

Theorem 4 (a)
Estimate in the $L^{2}(\Omega \times[0, T])$ norm:
$\left[\mathcal{E}_{L^{2}}\right]^{2}:=\mathcal{J}_{\mathcal{C}_{1}}\left(\lambda_{1}\left\|s-s_{h \tau}\right\|\right)^{2}$
$\leq\left\|s_{0}-s_{h \tau}(0)\right\|_{H_{k}^{-1}(\Omega)}^{2}+\mathcal{J}_{\mathcal{C}_{1}}\left(\bar{\lambda}_{1} \eta_{\Omega}\right)^{2}=:\left[\eta_{L^{2}}\right]^{2}$,

Theorem 4 (a)
Estimate in the $L^{2}(\Omega \times[0, T])$ norm:
$\left[\mathcal{E}_{L^{2}}\right]^{2}:=\mathcal{J}_{\mathcal{C}_{1}}\left(\underline{\lambda}_{1}\left\|s-s_{h \tau}\right\|\right)^{2}$
$\leq\left\|s_{0}-s_{h \tau}(0)\right\|_{H_{\bar{k}}^{-1}(\Omega)}^{2}+\mathcal{J}_{\mathcal{C}_{1}}\left(\bar{\lambda}_{1} \eta_{\Omega}\right)^{2}=:\left[\eta_{L^{2}}\right]^{2}$,
Estimate in the $L^{2}\left(0, T ; H^{1}(\Omega)\right)$ norm:
$\left[\mathcal{E}_{H^{1}}\right]^{2}:=\frac{1}{2} \mathcal{J}_{\mathfrak{C}_{2}}\left(\underline{\lambda}_{2}\left\|\Psi-\Psi_{h \tau}\right\|_{H_{K}^{1}(\Omega)}\right)^{2}$
$\leq\left\|s_{0}-s_{h \tau}(0)\right\|^{2}+\mathcal{J}_{\mathfrak{C}_{2}}\left(\eta^{\mathrm{deg}}\right)^{2}+4 \mathcal{J}_{\mathfrak{C}_{2}}\left(\bar{\lambda}_{2} \eta_{\Omega}\right)^{2}=:\left[\eta_{H^{1}}\right]^{2}$.

Theorem 4 (Local lower bounds)
For $n \in\{1, \ldots, N\}, \omega \subseteq \Omega$ and some $\mathfrak{T}_{\omega} \subset \Omega$ such that $\omega \subseteq \Omega$,
$\int_{l_{n}}\left(\left[\eta_{\omega}\right]^{2}+\left\|\Psi_{h \tau}-\Psi_{n, h}\right\|_{\hat{H}_{\bar{K}}^{1}(\omega)}^{2}\right)$
$\lesssim \operatorname{dist}_{\mathfrak{T}_{\omega}, I_{n}}^{\alpha}\left(\Psi, \Psi_{h \tau}\right)^{2}+\binom{$ Data oscillation, quadrature, \& }{ temporal discretization estimator }.

Theorem 4 (Local lower bounds)
For $n \in\{1, \ldots, N\}, \omega \subseteq \Omega$ and some $\mathfrak{T}_{\omega} \subset \Omega$ such that $\omega \subseteq \Omega$,
$\int_{l_{n}}\left(\left[\eta_{\omega}\right]^{2}+\left\|\Psi_{h \tau}-\Psi_{n, h}\right\|_{H_{k}^{1}(\omega)}^{2}\right)$
$\lesssim \operatorname{dist}_{\mathfrak{T}_{\omega}, l_{n}}^{\alpha}\left(\Psi, \Psi_{h \tau}\right)^{2}+\binom{$ Data oscillation, quadrature, \& }{ temporal discretization estimator }.
Similar estimate holds for the estimator

$$
\left[\eta_{\mathrm{LB}}^{n}\right]^{2}:=\int_{I_{n}}\left(\left[\eta_{\Omega}\right]^{2}+\left\|\Psi_{h \tau}-\psi_{n, h}\right\|_{\dot{H}_{\bar{K}}^{1}(\Omega)}^{2}\right)
$$

and the global-in-space error $\operatorname{dist}_{\Omega, l_{n}}^{\alpha}\left(\Psi_{h \tau}, \Psi\right)$.

Solution
$p_{\text {exact }}(x, y, t)=2-e^{16\left(1+t^{2}\right) x y(1-x)(1-y)}$ in $(0,1)^{2}$
$k(s)=s^{3}, S(p)=\frac{1}{(2-p)^{\frac{1}{3}}}$ (Brooks-Corey type)
$\overline{\boldsymbol{K}}=\mathbb{I}, \boldsymbol{g}=-\boldsymbol{e}_{x}, f((x, y), t)$ set accordingly

Effectivity

Effectivity index := upper bound/error
\triangle UHASSELT FWO

5 Reliability (upper bound) estimates

Effectivity

Effectivity index := upper bound/error $=\eta_{L^{2}} / \mathcal{E}_{L^{2}}$

5 Reliability (upper bound) estimates

Effectivity

Effectivity index := upper bound/error $=\eta_{H^{1}} / \mathcal{E}_{H^{1}}$

5 Global efficiency (lower bound)

Effectivity

Effectivity index :=error/lower bound $=\operatorname{dist}_{\Omega, l_{n}}^{\alpha}\left(\Psi, \Psi_{h \tau}\right) / \eta_{\mathrm{LB}}^{n}$,

5 Numerical results: degenerate case
Solution
$\Psi_{\text {exact }}(x, y, t)=12\left(1+t^{2}\right) x y(1-x)(1-y)$
$\theta(\Psi)= \begin{cases}\exp (\Psi-1) & \text { if } \psi<1 \\ 1 & \text { if } \psi \geq 1\end{cases}$
$k(s)= \begin{cases}s & \text { if } s<1 \\ 1 & \text { if } s \geq 1\end{cases}$
$\overline{\boldsymbol{K}}=\mathbb{I}, \boldsymbol{g}=-\boldsymbol{e}_{\chi}$
$f(x, y, t)$ set accordingly

Degenerate domains

5 Efficiency

\triangle UHASSELT SWO

Estimate $\log _{10}\left(\left[\eta_{n, h, K}^{\mathrm{F}}\right]\right)$

Effectivity index
K. Mitra, \& M. Vohralík. A posteriori error estimates for the Richards equation. arXiv preprint arXiv:2108.12507

d＇akujem Tak，Dankie kiitos
－ת ת
Asante Gracias شكر multumesc，hvala
salamat，謝謝 Thank you Danke Hvala
ありがとう Obrigado Merci Grazie 谢谢
ačiū Tack хвала Sağol

