

Numerical simulations using the Multiscale Finite Element Method: a posteriori estimates and mesh adaptivity

Frédéric Legoll

Ecole des Ponts & project-team MATHERIALS, Inria Paris

Joint works with Ludovic Chamoin (ENS Paris-Saclay)

Ecole d'été d'analyse numérique, EDF Lab, 27 juin - 1 juillet 2022

Multiscale problems are ubiquitous

Aircrafts are made of more and more composite materials

Courtesy M. Thomas (Airbus)

Frédéric Legoll (ENPC & Inria)

Concrete is a multiscale materials

Courtesy S. Brisard (ENPC)

Frédéric Legoll (ENPC & Inria)

Modelization of clay in the underground (courtesy Paris 6)

Clay is a complex materials. Channels with random lengths and diameters, according to a complex network.

Very much studied, in order to understand fluid and/or molecular diffusion in clay (e.g. waste storage).

Model problem

Model problem:

$$-\mathsf{div}\big[\frac{A_{\varepsilon}(\mathbf{x}) \nabla u^{\varepsilon}}{} \big] = f \quad \text{in } \Omega, \qquad u^{\varepsilon} = 0 \quad \text{on } \partial \Omega$$

where the (matrix-valued) diffusion coefficient A_{ε}

• is bounded from below and above uniformly in ε :

$$0 < m \leq A_{arepsilon}(x) \leq M$$
 a.e. in Ω

• varies at the small scale ε

Frédéric Legoll (ENPC & Inria)

Classical FE approach

Assume we discretize using a P1 approach on a mesh of size H:

$$\|u_{\varepsilon} - u_{\varepsilon}^{H}\|_{H^{1}(\Omega)} \leq C \inf_{v^{H} \in V^{H}} \|u_{\varepsilon} - v^{H}\|_{H^{1}(\Omega)} \leq C H \|u_{\varepsilon}\|_{H^{2}(\Omega)}$$

and since $\|\nabla^2 u_{\varepsilon}\|_{L^2(\Omega)} \sim 1/\varepsilon$, this leads to requiring $H \ll \varepsilon$: too expensive!

Classical FE approach

Assume we discretize using a P1 approach on a mesh of size H:

$$\|u_{\varepsilon} - u_{\varepsilon}^{H}\|_{H^{1}(\Omega)} \leq C \inf_{v^{H} \in V^{H}} \|u_{\varepsilon} - v^{H}\|_{H^{1}(\Omega)} \leq C H \|u_{\varepsilon}\|_{H^{2}(\Omega)}$$

and since $\|\nabla^2 u_{\varepsilon}\|_{L^2(\Omega)} \sim 1/\varepsilon$, this leads to requiring $H \ll \varepsilon$: too expensive!

Typical result ($\Omega = (0, 1)^2$, A_{ε} is ε -periodic with $\varepsilon = 1/64$, H = 1/8):

Bad approximation even on the coarse scales ...

Setting

 $-{\rm div}\,\left(A^{\varepsilon}\nabla u^{\varepsilon}\right)=f\ \, {\rm in}\,\,\Omega,\qquad u^{\varepsilon}=0\ \, {\rm on}\,\,\partial\Omega\qquad (\star)$

- Several numerical multiscale approaches have been proposed to address such problems
- They are particularly worthwile in a multi-query context: need to solve (*) for several f
- We focus here on one of these, the Multiscale Finite Element Method (MsFEM)

Setting

 $-{\rm div}\,\left(A^{\varepsilon}\nabla u^{\varepsilon}\right)=f\ \, {\rm in}\,\,\Omega,\qquad u^{\varepsilon}=0\ \, {\rm on}\,\,\partial\Omega\qquad (\star)$

- Several numerical multiscale approaches have been proposed to address such problems
- They are particularly worthwile in a multi-query context: need to solve (*) for several f
- We focus here on one of these, the Multiscale Finite Element Method (MsFEM)

Basic idea: split the cost into

- offline stage, expensive but independent of f (done one time)
- online stage, to be performed for each new f, but inexpensive

The Multiscale Finite Element Method (MsFEM)

Efendiev, Hou & Wu (\geq 1997)

Many subsequent contributions: Aarnes, Allaire & Brizzi, Brown, Chen et al, Chung et al, Dostert, Ginting, Henning, Ohlberger, ...

Related approaches: Malqvist & Peterseim, Berlyand/Owhadi/Zhang, ...

The Multiscale Finite Element Method (MsFEM)

$$-{\rm div}\,\left(A_{\varepsilon}\nabla u^{\varepsilon}\right)=f\ \, {\rm in}\,\,\Omega,\qquad u^{\varepsilon}=0\ \, {\rm on}\,\,\partial\Omega$$

Variational formulation: find $u^{\varepsilon} \in H_0^1(\Omega)$ such that

$$\forall v \in H_0^1(\Omega), \qquad \mathcal{A}_{\varepsilon}(u^{\varepsilon}, v) = b(v) \qquad (\star)$$

where

$$\mathcal{A}_{\varepsilon}(u,v) = \int_{\Omega} (\nabla v)^{\mathsf{T}} A_{\varepsilon} \nabla u \quad \text{and} \quad b(v) = \int_{\Omega} f v.$$

Idea of MsFEM: Galerkin approximation with suitably chosen basis functions:

- offline stage: pre-compute the basis functions, that are independent of f
- online stage: for each new f, solve (\star) .

Offline stage

• Coarse mesh with a P1 Finite Element basis functions ϕ_i^0 .

Offline stage

- Coarse mesh with a P1 Finite Element basis functions ϕ_i^0 .
- MsFEM basis function ϕ_i^{ε} , associated to node *i*:

$$\begin{cases} \text{In each element K,} \\ -\text{div } (A_{\varepsilon} \nabla \phi_i^{\varepsilon}) = 0 & \text{ in K} \\ \phi_i^{\varepsilon} = \phi_i^0 & \text{ on } \partial \mathsf{K} \end{cases}$$

The MsFEM basis functions ϕ_i^{ε} encode the specific fast oscillations (present in A_{ε}) of the problem. They are independent of f, and can be computed beforehand, in parallel.

Frédéric Legoll (ENPC & Inria)

Numerical illustration

In contrast to the FEM basis functions, the MsFEM basis functions encode the specific fast oscillations of the problem:

$$-\operatorname{div} \left(A^{\varepsilon} \nabla \phi_{i}^{\varepsilon}\right) = 0 \quad \text{in } \mathsf{K}, \qquad \phi_{i}^{\varepsilon} = \phi_{i}^{0} \quad \text{on } \partial \mathsf{K}$$

Online stage

$$W_H^{\varepsilon} = \operatorname{Span} \{ \phi_i^{\varepsilon}, \quad 1 \le i \le L \}$$

Galerkin approx. on W_H^{ε} of the original problem: find $u_H^{\varepsilon} \in W_H^{\varepsilon}$ s.t.

$$\forall v \in W^{\varepsilon}_H, \qquad \mathcal{A}_{\varepsilon}(u^{\varepsilon}_H, v) = b(v).$$

- The macro problem is inexpensive to solve (as many DOFs as in a P1 approach on the same coarse mesh)
- The highly oscillatory basis functions do NOT depend on *f* (adapted to a multi-query context)

MsFEM accuracy

On the same typical problem ($\Omega = (0, 1)^2$, A_{ε} is ε -periodic with $\varepsilon = 1/64$, H = 1/8):

Theoretical a priori estimate:

$$\|u_{\varepsilon} - u_{\varepsilon}^{H}\|_{H^{1}(\Omega)} \leq C \left(\sqrt{\varepsilon} + H + \sqrt{\varepsilon/H}\right)$$

and thus convergence in the regime $\varepsilon \ll H$.

Oversampling variant

In the definition of the basis functions,

 $-\operatorname{div} (A^{\varepsilon} \nabla \phi_i^{\varepsilon}) = 0 \quad \text{in } \mathsf{K}, \qquad \phi_i^{\varepsilon} = \phi_i^0 \quad \text{on } \partial \mathsf{K},$

the boundary condition does not seem to be adequate

Oversampling variant

In the definition of the basis functions,

 $-\operatorname{div} (A^{\varepsilon} \nabla \phi_i^{\varepsilon}) = 0 \quad \text{in } \mathsf{K}, \qquad \phi_i^{\varepsilon} = \phi_i^0 \quad \text{on } \partial \mathsf{K},$

the boundary condition does not seem to be adequate

For any element K, consider a larger domain S \supset K and let $\chi_i^{0,\rm S}$ be the extension of ϕ_i^0 on S

• Basis function associated to node *i*: solve

$$-\operatorname{div} \left[A_{\varepsilon} \nabla \chi_{i}^{\varepsilon, \mathsf{S}}\right] = 0 \quad \text{in } \mathsf{S}, \qquad \chi_{i}^{\varepsilon, \mathsf{S}} = \chi_{i}^{\mathsf{0}, \mathsf{S}} \quad \text{on } \partial \mathsf{S},$$

and restrict on K: $\phi_i^{\varepsilon} = \chi_i^{\varepsilon, \mathsf{S}} \Big|_{\mathsf{K}}$ on K (one DOF per node)

- Non-conforming discretization: $\phi_i^{\varepsilon} \not\in H^1(\Omega)$
- Much more accurate method

Frédéric Legoll (ENPC & Inria)

A posteriori error estimation

Very few works on multiscale problems: Abdulle et al [2009–], Henning et al [2015], Henning et al [2014].

We have used a method (based on the Constitutive Relation Error) which is classical in computational mechanics for single-scale problems.

Ladevèze et al [1983 and 2004], Destuynder et al [1999], ...

Frédéric Legoll (ENPC & Inria)

A posteriori estimation

Let $u^{\varepsilon} \in H_0^1(\Omega)$ be the exact solution and $u_H^{\varepsilon} \in H_0^1(\Omega)$ be its numerical approximation.

Let $\widehat{\sigma}_H \in H(\operatorname{div}, \Omega)$ be such that $-\operatorname{div} \widehat{\sigma}_H = f$ in Ω (many choices here).

Then

$$\|\nabla u^{\varepsilon} - \nabla u_{H}^{\varepsilon}\|_{L^{2}(A_{\varepsilon})}^{2} + \|A_{\varepsilon}\nabla u^{\varepsilon} - \widehat{\sigma}_{H}\|_{L^{2}(A_{\varepsilon}^{-1})}^{2} = \underbrace{\|A_{\varepsilon}\nabla u_{H}^{\varepsilon} - \widehat{\sigma}_{H}\|_{L^{2}(A_{\varepsilon}^{-1})}^{2}}_{\text{Const. Rel. Error (CRE)}}$$

Prager-Synge equality (proof by integration by parts)

The above RHS, which can be practically computed, is hence an upper-bound on the error:

$$\begin{split} \|\nabla u^{\varepsilon} - \nabla u_{H}^{\varepsilon}\|_{L^{2}(A_{\varepsilon})} &\leq \underbrace{\|A_{\varepsilon}\nabla u_{H}^{\varepsilon} - \widehat{\sigma}_{H}\|_{L^{2}(A_{\varepsilon}^{-1})}}_{\text{Const. Rel. Error (CRE)}} \end{split}$$

Notation:
$$\|\nabla u\|_{L^{2}(A_{\varepsilon})}^{2} &= \int_{\Omega} (\nabla u)^{T} A_{\varepsilon} \nabla u \quad \text{and} \quad \|\sigma\|_{L^{2}(A_{\varepsilon}^{-1})}^{2} &= \int_{\Omega} \sigma^{T} (A_{\varepsilon})^{-1} \sigma$$

Frédéric Legoll (ENPC & Inria) Ecole CEA-EDF-Inria Saclay,

In the single scale framework, there are several ways to build such a $\hat{\sigma}_H$:

- using Raviart-Thomas elements (see lectures of A. Ern)
- by solving local problems posed on patches around each node (the so-called flux-free approach)
- by solving local problems posed on each element (the so-called hybrid-flux approach, aka Element Equilibration Technique – EET)

In the single scale framework, there are several ways to build such a $\hat{\sigma}_H$:

- using Raviart-Thomas elements (see lectures of A. Ern)
- by solving local problems posed on patches around each node (the so-called flux-free approach)
- by solving local problems posed on each element (the so-called hybrid-flux approach, aka Element Equilibration Technique – EET)

It can be shown [Ladevèze and Leguillon, 1983] (e.g. for the Laplace equation with piecewise constant f) that

 $C \|\nabla u_H - \widehat{\sigma}_H\|_{L^2(\Omega)} \le \|\nabla u - \nabla u_H\|_{L^2(\Omega)} \le \|\nabla u_H - \widehat{\sigma}_H\|_{L^2(\Omega)}$

for some C independent of H.

In our multiscale context, we follow the EET technique.

Frédéric Legoll (ENPC & Inria)

We build $\hat{\sigma}_H$ following the EET technique, as in the single-scale setting:

• determine $\hat{F} = n^T \hat{\sigma}_H$ on any edge *e* by postprocessing $\sigma_H = A_{\varepsilon} \nabla u_H^{\varepsilon}$. By construction, these \hat{F} are in local equilibrium:

$$\int_{K} f + \sum_{e \subset \partial K} \int_{e} \widehat{F} = 0$$

We build $\hat{\sigma}_H$ following the EET technique, as in the single-scale setting:

• determine $\hat{F} = n^T \hat{\sigma}_H$ on any edge *e* by postprocessing $\sigma_H = A_{\varepsilon} \nabla u_H^{\varepsilon}$. By construction, these \hat{F} are in local equilibrium:

$$\int_{\mathcal{K}} f + \sum_{e \subset \partial \mathcal{K}} \int_{e} \widehat{F} = 0$$

• determine $\hat{\sigma}_H$ in any element K: solve

At the end of the day, we have a computable upper-bound on the error:

$$\|\nabla u^{\varepsilon} - \nabla u^{\varepsilon}_{H}\|_{L^{2}(A_{\varepsilon})} \leq \|\widehat{\sigma}_{H} - A_{\varepsilon} \nabla u^{\varepsilon}_{H}\|_{L^{2}(A_{\varepsilon}^{-1})}$$

L. Chamoin, F.L., CMAME 2018

Frédéric Legoll (ENPC & Inria)

Numerical example: Steady heat conduction in fiber composite

L. Chamoin, F.L., CMAME 2018

Frédéric Legoll (ENPC & Inria)

Fiber composite (field A_{ε})

$$egin{aligned} & A_arepsilon(x,y) = A(x/arepsilon,y/arepsilon) = \left(2 + P\cos(2\pi anh(w(r-0.3))/arepsilon)
ight) I_2 \end{aligned}$$

Non-periodic test-case, shortest wavelength in A_{ε} close to 0.01

Hou & Wu [1997]

Frédéric Legoll (ENPC & Inria)

Fiber composite (top: exact sol.; bottom: MsFEM sol.)

No oversampling, 5×5 macro elements (H = 0.2), $h = \frac{\varepsilon}{16} \approx 0.0125$. Error close to 25 % (on purpose, initial computation not so accurate)

Frédéric Legoll (ENPC & Inria)

Fiber composite (error estimation)

 $E_{CRE|K} = \|\widehat{\sigma}_H - A_{\varepsilon} \nabla u_H^{\varepsilon}\|_{L^2(K)}$

Error distribution $E_{CRE|K}^2$ (H = 0.2)

$$\mathsf{Effectivity\ index:} \quad 1 \leq \frac{\|\widehat{\sigma}_H - A_{\varepsilon} \nabla u_H^{\varepsilon}\|_{L^2(\Omega)}}{\|\nabla u^{\varepsilon} - \nabla u_H^{\varepsilon}\|_{L^2(\Omega)}} \approx 1.09$$

Estimated Error \approx True Error!

Frédéric Legoll (ENPC & Inria)

Fiber composite (adaptive strategy, tolerance 5%)

Adapted macro mesh (left), oversampling size (center), micro mesh (right)

- Split the error into various contributions (associated to *H*, *h*, oversampling ratio) in order to adapt the relevant discretization parameters
- Use the Allaire-Brizzi MsFEM variant in order to adapt wrt *H*, so that no additional fine-scale computations

Goal-oriented error estimation

L. Chamoin and F.L., Comput. Mech. 2021

Goal-oriented analysis

As for many a posteriori methods, our approach can be extended to estimate the error on quantities of interest, e.g. of the form

$$Q(u) = \int_{\omega} \left[A_{arepsilon}
abla u
ight]_1 \quad ext{for some } \omega \subset \Omega.$$

The procedure is classical:

• introduce the adjoint problem: let $\widetilde{u}^{\varepsilon} \in H_0^1(\Omega)$ such that $\forall v \in H_0^1(\Omega), \quad \mathcal{A}_{\varepsilon}(v, \widetilde{u}^{\varepsilon}) = Q(v).$

• then $\left| Q(u^{\varepsilon}) - Q(u_{H}^{\varepsilon}) - \overline{C}_{H}^{\varepsilon} \right| \leq \frac{1}{2} E_{\mathrm{CRE}}(u_{H}^{\varepsilon}) E_{\mathrm{CRE}}(\widetilde{u}_{H}^{\varepsilon})$

where

- $E_{\mathrm{CRE}}(u_H^{\varepsilon})$ (resp. $E_{\mathrm{CRE}}(\widetilde{u}_H^{\varepsilon})$) is the constitutive relation error when approximating u^{ε} (resp. $\widetilde{u}_H^{\varepsilon}$)
- $\overline{C}_{H}^{\varepsilon}$ is a fully computable quantity (depends on u_{H}^{ε} , $\widetilde{u}_{H}^{\varepsilon}$, $\widehat{\sigma}_{H}$ and $\widetilde{\sigma}_{H}$)

Solving the adjoint problem

Look for $\widetilde{u}^{\varepsilon} \in H_0^1(\Omega)$ such that

$$\forall v \in H^1_0(\Omega), \quad \mathcal{A}_{\varepsilon}(v, \widetilde{u}^{\varepsilon}) = Q(v).$$

In practice:

$$\widetilde{u}^{\varepsilon} = \widetilde{u}^{\varepsilon}_{\mathrm{handbook}} + \widetilde{u}^{\varepsilon}_{\mathrm{res}}$$

where

- $\widetilde{u}_{handbook}^{\varepsilon}$ is a localized solution of the adjoint problem, computed using a fine discretization on some $\omega \subset \subset \Omega$
- \bullet the remainder $\widetilde{u}_{\mathrm{res}}^{\varepsilon}$ solves

$$\forall v \in H^1_0(\Omega), \quad \mathcal{A}_{\varepsilon}(v, \widetilde{u}_{\mathrm{res}}^{\varepsilon}) = Q(v) - \mathcal{A}_{\varepsilon}(v, \widetilde{u}_{\mathrm{handbook}}^{\varepsilon})$$

In practice, MsFEM approximation for $\widetilde{u}_{\mathrm{res}}^{\varepsilon}$.

No additional offline computation to approximate $\widetilde{u}^{\varepsilon}$

Frédéric Legoll (ENPC & Inria)

Material with defect

$$A_{\varepsilon}(x,y) = \left[A_{\text{per}}\left(\frac{x}{\varepsilon},\frac{y}{\varepsilon}\right) + B_{\text{defect}}\left(\frac{x}{\varepsilon},\frac{y}{\varepsilon}\right)\right] I_2, \quad B_{\text{defect}}(x,y) = 5\exp(-(x^2+y^2))$$

Quantity of interest: $Q(u) = \int_{\Omega} [A_{\varepsilon} \nabla u^{\varepsilon}]_1$ with $|\omega| = 4\varepsilon \times 4\varepsilon$. Two cases:

- ω_1 centered on the defect (Q_1)
- ω_2 far from the defect (Q_2)

Frédéric Legoll (ENPC & Inria)

Material with defect (top: exact; bottom: MsFEM sol.)

Crude computation: no oversampling, 9 \times 9 macro elements, $h = \varepsilon/3$. Initial error on the QoI \approx 25 %.

Frédéric Legoll (ENPC & Inria)

Material with defect (true error)

Initial error on the QoI \approx 25 % (on purpose, initial computation not so accurate).

Frédéric Legoll (ENPC & Inria)

Adapted meshes: Qol Q_1 (left) vs Q_2 (center) vs global (right)

The adapted mesh is much coarser for the QoI. No systematic need to refine around the defect, only around ω !

Frédéric Legoll (ENPC & Inria)

Convergence of the error estimate

Convergence of the error estimate (top) and of the error indicators (bottom) for Q_1 (left) and Q_2 (right)

Frédéric Legoll (ENPC & Inria)

Another illustration: Darcy flow in porous medium

$$-{
m div}\,\left[{\it A}_arepsilon(x)
abla u^arepsilon(x)
ight]=f(x)~~{
m in}~\Omega,~~u^arepsilon=0~~{
m on}~\partial\Omega$$

Take
$$f = 1_{K_1} - 1_{K_2}$$
, where
$$\begin{cases} K_1 = [0.1, 0.2] \times [0.8, 0.9], \\ K_2 = [0.8, 0.9] \times [0.1, 0.2]. \end{cases}$$

Following Chung et al 2016:

$$A_{\varepsilon}(x,y) = a_{\varepsilon}(x,y) \ I_2$$

with $a_{\varepsilon} \equiv 10^4$ in the fractures, $a_{\varepsilon} \equiv 1$ elsewhere.

Quantity of interest: $Q(u) = \frac{1}{|K_2|} \int_{K_2} u$ (average value of u on the outflow region K_2).

Frédéric Legoll (ENPC & Inria)

Darcy flow: numerical results

Crude computation: no oversampling, 10×10 macro elements, h = H/10

Darcy flow: adaptive strategy (error threshold: 1%)

Final MsFEM discretization for Q (top) and for the global error (bottom)

Frédéric Legoll (ENPC & Inria)

Conclusions

- We have introduced an a posteriori error estimation method:
 - compatible with the offline/online spirit of the MsFEM approach
 - ok for global error and error on quantities of interest
- Estimated Error pprox True Error (within 10%)

Other works:

- Review article (L. Chamoin, F.L.): arXiv preprint 2110.02160
- A priori and a posteriori estimates for a different variant of MsFEM: F.L., P.-L. Rothé, C. Le Bris, U. Hetmaniuk, SIAM MMS 2022.

https://team.inria.fr/matherials/

Support from ONR and EOARD is gratefully acknowledged.