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Multiscale problems are ubiquitous

Aircrafts are made of more and more composite materials

Courtesy M. Thomas (Airbus)
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Concrete is a multiscale materials

Courtesy S. Brisard (ENPC)
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Modelization of clay in the underground (courtesy Paris 6)

Clay is a complex materials. Channels with random lengths and diameters,
according to a complex network.

Very much studied, in order to understand fluid and/or molecular diffusion
in clay (e.g. waste storage).
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Model problem

Model problem:
—div[A-(x)Vu'] =F in Q, u® =0 on 00

where the (matrix-valued) diffusion coefficient A.

@ is bounded from below and above uniformly in €:

0<m<A(x) <M ae inQ

@ varies at the small scale ¢
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Classical FE approach

Assume we discretize using a P1 approach on a mesh of size H:

lus = uf'll () < € A lu = "l () < CH el

and since HV2U5||L2(Q) ~ 1/e, this leads to requiring H < ¢: too
expensive!
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Classical FE approach

Assume we discretize using a P1 approach on a mesh of size H:

lue = uf||pigy < C V,j”f lue = vl gy < CH lluclliea)

and since ||V2U€||L2(Q) ~ 1/e, this leads to requiring H < ¢: too
expensive!

Typical result (Q = (0,1)?, A. is e—per|0d|c with € = 1/64 H=1/8):

S

Reference solution P1 solution

Bad approximation even on the coarse scales . ..
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Setting

—div (A°Vu®) =1f in Q, u® =0 on 0Q (%)
@ Several numerical multiscale approaches have been proposed to
address such problems

@ They are particularly worthwile in a multi-query context: need to
solve (%) for several f

@ We focus here on one of these, the Multiscale Finite Element Method
(MsFEM)
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Setting

—div (A°Vu®) =1f in Q, u® =0 on 0Q (%)
@ Several numerical multiscale approaches have been proposed to
address such problems

@ They are particularly worthwile in a multi-query context: need to
solve (%) for several f

@ We focus here on one of these, the Multiscale Finite Element Method
(MsFEM)

Basic idea: split the cost into
e offline stage, expensive but independent of f (done one time)

@ online stage, to be performed for each new f, but inexpensive
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The Multiscale Finite Element Method
(MsFEM)

Efendiev, Hou & Wu (> 1997)

Many subsequent contributions: Aarnes, Allaire & Brizzi, Brown, Chen et
al, Chung et al, Dostert, Ginting, Henning, Ohlberger, ...

Related approaches: Malqvist & Peterseim, Berlyand/Owhadi/Zhang, ...
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The Multiscale Finite Element Method (MsFEM)

—div (A.Vue) =f in Q, u® =0 on 0Q

Variational formulation: find u® € H}(Q) such that

Vv € H3(Q), A (v, v) = b(v) (*)

where

Ac(u, v):/Q(Vv)TAEVu and b(v):/va.

Idea of MsFEM: Galerkin approximation with suitably chosen basis
functions:

@ offline stage: pre-compute the basis functions, that are independent
of f

@ online stage: for each new f, solve (x).
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Offline stage

o Coarse mesh with a P1 Finite Element basis functions ¢?.
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Offline stage

K

o Coarse mesh with a P1 Finite Element basis functions ¢?.

@ MsFEM basis function ¢7, associated to node i:

§ In each element K,
4 —div (A.V¢5) =0 in K
¢ =¢9 on K

The MsFEM basis functions ¢% encode the specific fast oscillations
(present in A.) of the problem. They are independent of f, and can
be computed beforehand, in parallel.
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Numerical illustration
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In contrast to the FEM basis functions, the MsFEM basis functions encode
the specific fast oscillations of the problem:

—div (A°V¢5) =0 in K,

Frédéric Legoll (ENPC & Inria)

Ecole CEA-EDF-Inria
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Online stage

Wg = Span{¢f, 1<i<L}

Galerkin approx. on W}, of the original problem: find v}, € W s.t.

Vv e Wy, A.(ufy, v) = b(v).

@ The macro problem is inexpensive to solve (as many DOFs as in a P1
approach on the same coarse mesh)

@ The highly oscillatory basis functions do NOT depend on f (adapted
to a multi-query context)
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MsFEM accuracy

On the same typical problem (Q = (0,1)?, A. is e-periodic with ¢ = 1/64,
H=1/8):

Reference solution P1 solution MsFEM solution

Theoretical a priori estimate:

lu: = ¥l < € (VE+ H+ /2/H)

and thus convergence in the regime ¢ < H.
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Oversampling variant

In the definition of the basis functions,
—div (A°V¢5) =0 inK, ¢ =¢ on dK,

the boundary condition does not seem to be adequate ...
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Oversampling variant

In the definition of the basis functions,
—div (A°V¢5) =0 inK, ¢ =¢ on dK,

the boundary condition does not seem to be adequate ...

For any element K, consider a larger domain S D K
and let X?’S be the extension of (Z)? on S

E

@ Basis function associated to node i: solve

—div [AE vxﬂ —0inS, X% =y%° onds,

1

on K (one DOF per node)

. . . . . £ 1
@ Non-conforming discretization: ¢; ¢ H*(Q)
@ Much more accurate method
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A posteriori error estimation

Very few works on multiscale problems: Abdulle et al [2009-], Henning et
al [2015], Henning et al [2014].

We have used a method (based on the Constitutive Relation Error) which
is classical in computational mechanics for single-scale problems.

Ladeveze et al [1983 and 2004], Destuynder et al [1999], ...
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A posteriori estimation

Let u® € H}(2) be the exact solution and u§, € H}(S2) be its numerical
approximation.
Let oy € H(div, Q) be such that —div gy = f in Q (many choices here).

Then

||vu€ _ VUIE-IHiZ(Ae) + ||A5VU€ = 8H||i2(Agl) = ||A5VU7:_/ — 3H|’i2(A;1)

Const. Rel. Error (CRE)

Prager-Synge equality (proof by integration by parts)

The above RHS, which can be practically computed, is hence an
upper-bound on the error:

Vi = Vupllizay < AVl = ahllpea)

Const. Rel. Error (CRE)

Notation: [[Vu||72, :/Q(VU)TAEVU and HaHi2<A;1) :/QUT(AE)*IU
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Construction of oy s.t. —divoy = f

In the single scale framework, there are several ways to build such a oy:
@ using Raviart-Thomas elements (see lectures of A. Ern)

@ by solving local problems posed on patches around each node (the
so-called flux-free approach)

@ by solving local problems posed on each element (the so-called
hybrid-flux approach, aka Element Equilibration Technique — EET)
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Construction of oy s.t. —divoy = f

In the single scale framework, there are several ways to build such a oy:
@ using Raviart-Thomas elements (see lectures of A. Ern)

@ by solving local problems posed on patches around each node (the
so-called flux-free approach)

@ by solving local problems posed on each element (the so-called
hybrid-flux approach, aka Element Equilibration Technique — EET)

It can be shown [Ladevéze and Leguillon, 1983] (e.g. for the Laplace
equation with piecewise constant f) that

ClIVuy = onllpi) < IVu = Vunllpq) < IVun = anll 2
for some C independent of H.

In our multiscale context, we follow the EET technique.
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Construction of oy s.t. —divoy = f

We build 7 following the EET technique, as in the single-scale setting:

T

o determine F = n OH on any edge e by postprocessing oy = A-Vuj,.

By construction, these F are in local equilibrium:

£ F —
/K+ZF0

eCoK '€
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Construction of oy s.t. —divoy = f

We build 7 following the EET technique, as in the single-scale setting:

T

o determine F = n OH on any edge e by postprocessing oy = A-Vuj,.

By construction, these F are in local equilibrium:

£ F—
/K+ZF0

eCoK '€

@ determine oy in any element K: solve
2 ) —div [A:Vuy]=f inK,
nTA.Viy = F; on edge from i to j
il
and set oy = A.Viuy in K.

At the end of the day, we have a computable upper-bound on the error:
IV~ Viillizay < 154 — AV iz

L. Chamoin, F.L., CMAME 2018
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Numerical example:
Steady heat conduction in fiber composite

L. Chamoin, F.L., CMAME 2018
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Fiber composite (field A.)

Ac(x,y) = A(x/e,y/e) = (2 + P cos(2m tanh(w(r — 0.3))/5)) b

Non-periodic test-case, shortest wavelength in A close to 0.01

10
09}
0.8}

0.7

Hou & Wu [1997]

Frédéric Legoll (ENPC & Inria) Ecole CEA-EDF-Inria Saclay, June 2022 20/35



Fiber composite (top: exact sol.; bottom: MsFEM sol.)
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No oversampling, 5 x 5 macro elements (H =0.2), h = 1i6 ~ 0.0125.

Error close to 25 % (on purpose, initial computation not so accurate)
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Fiber composite (error estimation)

local error (relative)

Error distribution E%RE\K (H=0.2)

o — AV UE
Effectivity index: 1 < o Hle@ 1 o

T Ve = Vgl

Estimated Error =~ True Error!
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Fiber composite (adaptive strategy, tolerance 5%)
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Adapted macro mesh (left), oversampling size (center), micro mesh (right)

@ Split the error into various contributions (associated to H, h,
oversampling ratio) in order to adapt the relevant discretization
parameters

@ Use the Allaire-Brizzi MsFEM variant in order to adapt wrt H, so that
no additional fine-scale computations
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Goal-oriented error estimation

L. Chamoin and F.L., Comput. Mech. 2021
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Goal-oriented analysis

As for many a posteriori methods, our approach can be extended to
estimate the error on quantities of interest, e.g. of the form

Qu) = / [A:Vu]; for some w C Q.

The procedure is classical:
e introduce the adjoint problem: let ¢ € H3(Q) such that
Vv € H (Q), A(v,TF) = Q(v).
@ then _ A .
Q(u7) = Qup) — Cy| <

1 € ~c
5 Ecre(up) Ecre(ug)
where

o Ecru(uf) (resp. Ecrie(Uf)) is the constitutive relation error when
approximating u® (resp. U5)

° fi, is a fully computable quantity (depends on uf,, Uf;, 64 and G4)
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Solving the adjoint problem
Look for ¢ € H () such that
Vv € H3(Q), A(v,7F) = Q(v).
In practice:
U= ﬁﬁandbook + Z’fes

where

® U, dbook 1S @ localized solution of the adjoint problem, computed

using a fine discretization on some w CC Q

@ the remainder .. solves

res
Vv e H&(Q)7 AS(V? gfes) = Q(V) - AE(V7 aiandbook)
In practice, MsFEM approximation for 0.
No additional offline computation to approximate u®
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Material with defect

A-(x,y) = [Aper (2.2) + Buctect (22 2)] o Bueteer(x,¥) = Sexp(=(x*+y2)

081
06k -
04F

0.2

-0.2F
04k
061

-0.8+

Quantity of interest: Q(u) = / [A-Vuf]; with |w| = 4¢ x 4e. Two cases:

@ wj centered on the defect (Q1)
@ wy far from the defect (Q»)
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Material with defect (top: exact; bottom: MsFEM sol.)

2e o

O

u® V]

Crude computation: no oversampling, 9 x 9 macro elements, h = ¢/3.

Initial error on the Qol ~ 25 %.
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Material with defect (true error)

local error (relative

Initial error on the Qol ~ 25 % (on purpose, initial computation not so
accurate).

Frédéric Legoll (ENPC & Inria) Ecole CEA-EDF-Inria Saclay, June 2022 29/35



Adapted meshes: Qol @y (left) vs @, (center) vs global (right)

Mo mo Mo

| 3 e |

B 2 | S |
Q1(u) @2(v) global

The adapted mesh is much coarser for the Qol.
No systematic need to refine around the defect, only around w!
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Convergence of the error estimate
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Another illustration: Darcy flow in porous medium
—div [A(x)Vui(x)] = f(x) in Q, u® =0 on 0Q

K1 =[0.1,0.2] x [0.8,0.9],

Take f = 1k, — 1k,, where
o {Kz = [0.8,0.9] x [0.1,0.2].

Following Chung et al 2016:

AE(X’y) = aE(va) l2

with a. = 10% in the fractures,
a: = 1 elsewhere.

_ 1
|K2| Jk,

Quantity of interest: Q(u) u (average value of u on the

outflow region K3).
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Darcy flow: numerical results

V],
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Primal pb
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Primal pb
(MsFEM)

N
N

Adjoint problem
(exact)

Crude computation: no oversampling, 10 x 10 macro elements, h = H/10
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Darcy flow: adaptive strategy (error threshold: 1%)
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Final MsFEM discretization for Q (top) and for the global error (bottom)
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Conclusions

@ We have introduced an a posteriori error estimation method:
e compatible with the offline/online spirit of the MsFEM approach
o ok for global error and error on quantities of interest

e Estimated Error ~ True Error (within 10%)
Other works:
@ Review article (L. Chamoin, F.L.): arXiv preprint 2110.02160

@ A priori and a posteriori estimates for a different variant of MsFEM:
F.L., P-L. Rothé, C. Le Bris, U. Hetmaniuk, SIAM MMS 2022.
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