

École des Ponts
ParisTech
 MATHerials

Numerical simulations
 using the Multiscale Finite Element Method:
 a posteriori estimates and mesh adaptivity

Frédéric Legoll

Ecole des Ponts \& project-team MATHERIALS, Inria Paris Joint works with Ludovic Chamoin (ENS Paris-Saclay)

Ecole d'été d'analyse numérique, EDF Lab, 27 juin - 1 juillet 2022

Multiscale problems are ubiquitous

Aircrafts are made of more and more composite materials

Courtesy M. Thomas (Airbus)

Concrete is a multiscale materials

Courtesy S. Brisard (ENPC)

Modelization of clay in the underground (courtesy Paris 6)

Clay is a complex materials. Channels with random lengths and diameters, according to a complex network.

Very much studied, in order to understand fluid and/or molecular diffusion in clay (e.g. waste storage).

Model problem

Model problem:

$$
-\operatorname{div}\left[A_{\varepsilon}(x) \nabla u^{\varepsilon}\right]=f \text { in } \Omega, \quad u^{\varepsilon}=0 \text { on } \partial \Omega
$$

where the (matrix-valued) diffusion coefficient A_{ε}

- is bounded from below and above uniformly in ε :

$$
0<m \leq A_{\varepsilon}(x) \leq M \quad \text { a.e. in } \Omega
$$

- varies at the small scale ε

Classical FE approach

Assume we discretize using a P1 approach on a mesh of size H :

$$
\left\|u_{\varepsilon}-u_{\varepsilon}^{H}\right\|_{H^{1}(\Omega)} \leq C \inf _{v^{H} \in V^{H}}\left\|u_{\varepsilon}-v^{H}\right\|_{H^{1}(\Omega)} \leq C H\left\|u_{\varepsilon}\right\|_{H^{2}(\Omega)}
$$

and since $\left\|\nabla^{2} u_{\varepsilon}\right\|_{L^{2}(\Omega)} \sim 1 / \varepsilon$, this leads to requiring $H \ll \varepsilon$: too expensive!

Classical FE approach

Assume we discretize using a P1 approach on a mesh of size H :

$$
\left\|u_{\varepsilon}-u_{\varepsilon}^{H}\right\|_{H^{1}(\Omega)} \leq C \inf _{v^{H} \in V^{H}}\left\|u_{\varepsilon}-v^{H}\right\|_{H^{1}(\Omega)} \leq C H\left\|u_{\varepsilon}\right\|_{H^{2}(\Omega)}
$$

and since $\left\|\nabla^{2} u_{\varepsilon}\right\|_{L^{2}(\Omega)} \sim 1 / \varepsilon$, this leads to requiring $H \ll \varepsilon$: too expensive!

Typical result $\left(\Omega=(0,1)^{2}, A_{\varepsilon}\right.$ is ε-periodic with $\left.\varepsilon=1 / 64, H=1 / 8\right)$:

Reference solution

P1 solution

Bad approximation even on the coarse scales ...

Setting

$$
-\operatorname{div}\left(A^{\varepsilon} \nabla u^{\varepsilon}\right)=f \text { in } \Omega, \quad u^{\varepsilon}=0 \text { on } \partial \Omega
$$

- Several numerical multiscale approaches have been proposed to address such problems
- They are particularly worthwile in a multi-query context: need to solve (\star) for several f
- We focus here on one of these, the Multiscale Finite Element Method (MsFEM)

Setting

$$
-\operatorname{div}\left(A^{\varepsilon} \nabla u^{\varepsilon}\right)=f \text { in } \Omega, \quad u^{\varepsilon}=0 \text { on } \partial \Omega
$$

- Several numerical multiscale approaches have been proposed to address such problems
- They are particularly worthwile in a multi-query context: need to solve (\star) for several f
- We focus here on one of these, the Multiscale Finite Element Method (MsFEM)

Basic idea: split the cost into

- offline stage, expensive but independent of f (done one time)
- online stage, to be performed for each new f, but inexpensive

The Multiscale Finite Element Method (MsFEM)

Efendiev, Hou \& Wu (\geq 1997)
Many subsequent contributions: Aarnes, Allaire \& Brizzi, Brown, Chen et al, Chung et al, Dostert, Ginting, Henning, Ohlberger, ...

Related approaches: Malqvist \& Peterseim, Berlyand/Owhadi/Zhang, ...

The Multiscale Finite Element Method (MsFEM)

$$
-\operatorname{div}\left(A_{\varepsilon} \nabla u^{\varepsilon}\right)=f \text { in } \Omega, \quad u^{\varepsilon}=0 \text { on } \partial \Omega
$$

Variational formulation: find $u^{\varepsilon} \in H_{0}^{1}(\Omega)$ such that

$$
\forall v \in H_{0}^{1}(\Omega), \quad \mathcal{A}_{\varepsilon}\left(u^{\varepsilon}, v\right)=b(v)
$$

where

$$
\mathcal{A}_{\varepsilon}(u, v)=\int_{\Omega}(\nabla v)^{T} A_{\varepsilon} \nabla u \quad \text { and } \quad b(v)=\int_{\Omega} f v .
$$

Idea of MsFEM: Galerkin approximation with suitably chosen basis functions:

- offline stage: pre-compute the basis functions, that are independent of f
- online stage: for each new f, solve (\star).

Offline stage

- Coarse mesh with a P1 Finite Element basis functions ϕ_{i}^{0}.

Offline stage

- Coarse mesh with a P1 Finite Element basis functions ϕ_{i}^{0}.
- MsFEM basis function ϕ_{i}^{ε}, associated to node i :

In each element K,

$$
\left\{\begin{aligned}
-\operatorname{div}\left(A_{\varepsilon} \nabla \phi_{i}^{\varepsilon}\right)=0 & \text { in } \mathrm{K} \\
\phi_{i}^{\varepsilon}=\phi_{i}^{0} & \text { on } \partial \mathrm{K}
\end{aligned}\right.
$$

The MsFEM basis functions ϕ_{i}^{ε} encode the specific fast oscillations (present in A_{ε}) of the problem. They are independent of f, and can be computed beforehand, in parallel.

Numerical illustration

A^{ε}

Adapted basis functions

In contrast to the FEM basis functions, the MsFEM basis functions encode the specific fast oscillations of the problem:

$$
-\operatorname{div}\left(A^{\varepsilon} \nabla \phi_{i}^{\varepsilon}\right)=0 \text { in } \mathrm{K}, \quad \phi_{i}^{\varepsilon}=\phi_{i}^{0} \text { on } \partial \mathrm{K}
$$

Online stage

$$
W_{H}^{\varepsilon}=\operatorname{Span}\left\{\phi_{i}^{\varepsilon}, \quad 1 \leq i \leq L\right\}
$$

Galerkin approx. on W_{H}^{ε} of the original problem: find $u_{H}^{\varepsilon} \in W_{H}^{\varepsilon}$ s.t.

$$
\forall v \in W_{H}^{\varepsilon}, \quad \mathcal{A}_{\varepsilon}\left(u_{H}^{\varepsilon}, v\right)=b(v)
$$

- The macro problem is inexpensive to solve (as many DOFs as in a P1 approach on the same coarse mesh)
- The highly oscillatory basis functions do NOT depend on f (adapted to a multi-query context)

MsFEM accuracy

On the same typical problem $\left(\Omega=(0,1)^{2}, A_{\varepsilon}\right.$ is ε-periodic with $\varepsilon=1 / 64$, $H=1 / 8)$:

Reference solution

P1 solution

MsFEM solution

Theoretical a priori estimate:

$$
\left\|u_{\varepsilon}-u_{\varepsilon}^{H}\right\|_{H^{1}(\Omega)} \leq C(\sqrt{\varepsilon}+H+\sqrt{\varepsilon / H})
$$

and thus convergence in the regime $\varepsilon \ll H$.

Oversampling variant

In the definition of the basis functions,

$$
-\operatorname{div}\left(A^{\varepsilon} \nabla \phi_{i}^{\varepsilon}\right)=0 \text { in } \mathrm{K}, \quad \phi_{i}^{\varepsilon}=\phi_{i}^{0} \text { on } \partial \mathrm{K},
$$

the boundary condition does not seem to be adequate...

Oversampling variant

In the definition of the basis functions,

$$
-\operatorname{div}\left(A^{\varepsilon} \nabla \phi_{i}^{\varepsilon}\right)=0 \text { in } \mathrm{K}, \quad \phi_{i}^{\varepsilon}=\phi_{i}^{0} \text { on } \partial \mathrm{K},
$$

the boundary condition does not seem to be adequate ...

For any element K , consider a larger domain $\mathrm{S} \supset \mathrm{K}$ and let $\chi_{i}^{0, S}$ be the extension of ϕ_{i}^{0} on S

- Basis function associated to node i : solve

$$
-\operatorname{div}\left[A_{\varepsilon} \nabla \chi_{i}^{\varepsilon, S}\right]=0 \text { in } \mathrm{S}, \quad \chi_{i}^{\varepsilon, \mathrm{S}}=\chi_{i}^{0, \mathrm{~S}} \text { on } \partial \mathrm{S}
$$

and restrict on K : $\phi_{i}^{\varepsilon}=\left.\chi_{i}^{\varepsilon, S}\right|_{K}$ on K (one DOF per node)

- Non-conforming discretization: $\phi_{i}^{\varepsilon} \notin H^{1}(\Omega)$
- Much more accurate method

A posteriori error estimation

Very few works on multiscale problems: Abdulle et al [2009-], Henning et al [2015], Henning et al [2014].

We have used a method (based on the Constitutive Relation Error) which is classical in computational mechanics for single-scale problems.

Ladevèze et al [1983 and 2004], Destuynder et al [1999], ...

A posteriori estimation

Let $u^{\varepsilon} \in H_{0}^{1}(\Omega)$ be the exact solution and $u_{H}^{\varepsilon} \in H_{0}^{1}(\Omega)$ be its numerical approximation.
Let $\widehat{\sigma}_{H} \in H(\operatorname{div}, \Omega)$ be such that $-\operatorname{div} \widehat{\sigma}_{H}=f$ in Ω (many choices here).
Then

$$
\left\|\nabla u^{\varepsilon}-\nabla u_{H}^{\varepsilon}\right\|_{L^{2}\left(A_{\varepsilon}\right)}^{2}+\left\|A_{\varepsilon} \nabla u^{\varepsilon}-\widehat{\sigma}_{H}\right\|_{L^{2}\left(A_{\varepsilon}^{-1}\right)}^{2}=\underbrace{\left\|A_{\varepsilon} \nabla u_{H}^{\varepsilon}-\widehat{\sigma}_{H}\right\|_{L^{2}\left(A_{\varepsilon}^{-1}\right)}^{2}}_{\text {Const. Rel. Error (CRE) }}
$$

Prager-Synge equality (proof by integration by parts)
The above RHS, which can be practically computed, is hence an upper-bound on the error:

$$
\left\|\nabla u^{\varepsilon}-\nabla u_{H}^{\varepsilon}\right\|_{L^{2}\left(A_{\varepsilon}\right)} \leq \underbrace{\left\|A_{\varepsilon} \nabla u_{H}^{\varepsilon}-\widehat{\sigma}_{H}\right\|_{L^{2}\left(A_{\varepsilon}^{-1}\right)}}_{\text {Const. Rel. Error (CRE) }}
$$

Notation: $\|\nabla u\|_{L^{2}\left(A_{\varepsilon}\right)}^{2}=\int_{\Omega}(\nabla u)^{T} A_{\varepsilon} \nabla u$ and $\|\sigma\|_{L^{2}\left(A_{\varepsilon}^{-1}\right)}^{2}=\int_{\Omega} \sigma^{T}\left(A_{\varepsilon}\right)^{-1} \sigma$

Construction of $\widehat{\sigma}_{H}$ s.t. $-\operatorname{div} \widehat{\sigma}_{H}=f$

In the single scale framework, there are several ways to build such a $\widehat{\sigma}_{H}$:

- using Raviart-Thomas elements (see lectures of A. Ern)
- by solving local problems posed on patches around each node (the so-called flux-free approach)
- by solving local problems posed on each element (the so-called hybrid-flux approach, aka Element Equilibration Technique - EET)

Construction of $\widehat{\sigma}_{H}$ s.t. $-\operatorname{div} \widehat{\sigma}_{H}=f$

In the single scale framework, there are several ways to build such a $\widehat{\sigma}_{H}$:

- using Raviart-Thomas elements (see lectures of A. Ern)
- by solving local problems posed on patches around each node (the so-called flux-free approach)
- by solving local problems posed on each element (the so-called hybrid-flux approach, aka Element Equilibration Technique - EET) It can be shown [Ladevèze and Leguillon, 1983] (e.g. for the Laplace equation with piecewise constant f) that

$$
C\left\|\nabla u_{H}-\widehat{\sigma}_{H}\right\|_{L^{2}(\Omega)} \leq\left\|\nabla u-\nabla u_{H}\right\|_{L^{2}(\Omega)} \leq\left\|\nabla u_{H}-\widehat{\sigma}_{H}\right\|_{L^{2}(\Omega)}
$$

for some C independent of H.

In our multiscale context, we follow the EET technique.

Construction of $\widehat{\sigma}_{H}$ s.t. $-\operatorname{div} \widehat{\sigma}_{H}=f$

We build $\widehat{\sigma}_{H}$ following the EET technique, as in the single-scale setting:

- determine $\widehat{F}=n^{T} \widehat{\sigma}_{H}$ on any edge e by postprocessing $\sigma_{H}=A_{\varepsilon} \nabla u_{H}^{\varepsilon}$. By construction, these \widehat{F} are in local equilibrium:

$$
\int_{K} f+\sum_{e \subset \partial K} \int_{e} \hat{F}=0
$$

Construction of $\widehat{\sigma}_{H}$ s.t. $-\operatorname{div} \widehat{\sigma}_{H}=f$

We build $\widehat{\sigma}_{H}$ following the EET technique, as in the single-scale setting:

- determine $\widehat{F}=n^{T} \widehat{\sigma}_{H}$ on any edge e by postprocessing $\sigma_{H}=A_{\varepsilon} \nabla u_{H}^{\varepsilon}$. By construction, these \widehat{F} are in local equilibrium:

$$
\int_{K} f+\sum_{e \subset \partial K} \int_{e} \hat{F}=0
$$

- determine $\widehat{\sigma}_{H}$ in any element K : solve

$$
\begin{aligned}
& (\star) \quad\left\{\begin{array}{c}
-\operatorname{div}\left[A_{\varepsilon} \nabla \widehat{u}_{H}\right]=f \text { in } K, \\
n^{T} A_{\varepsilon} \nabla \widehat{u}_{H}=\widehat{F}_{i j} \quad \text { on edge from } i \text { to } j
\end{array}\right. \\
& \text { and set } \widehat{\sigma}_{H}=A_{\varepsilon} \nabla \widehat{u}_{H} \text { in } K .
\end{aligned}
$$

At the end of the day, we have a computable upper-bound on the error:

$$
\left\|\nabla u^{\varepsilon}-\nabla u_{H}^{\varepsilon}\right\|_{L^{2}\left(A_{\varepsilon}\right)} \leq\left\|\widehat{\sigma}_{H}-A_{\varepsilon} \nabla u_{H}^{\varepsilon}\right\|_{L^{2}\left(A_{\varepsilon}^{-1}\right)}
$$

L. Chamoin, F.L., CMAME 2018

Numerical example:
 Steady heat conduction in fiber composite

L. Chamoin, F.L., CMAME 2018

Fiber composite (field A_{ε})

$$
A_{\varepsilon}(x, y)=A(x / \varepsilon, y / \varepsilon)=(2+P \cos (2 \pi \tanh (w(r-0.3)) / \varepsilon)) I_{2}
$$

Non-periodic test-case, shortest wavelength in A_{ε} close to 0.01

Hou \& Wu [1997]

Fiber composite (top: exact sol.; bottom: MsFEM sol.)

u^{ε}

$\left[\nabla u^{\varepsilon}\right]_{1}$
No oversampling, 5×5 macro elements $(H=0.2)$, $h=\frac{\varepsilon}{16} \approx 0.0125$. Error close to 25 \% (on purpose, initial computation not so accurate)

Fiber composite (error estimation)

$$
E_{C R E \mid K}=\left\|\widehat{\sigma}_{H}-A_{\varepsilon} \nabla u_{H}^{\varepsilon}\right\|_{L^{2}(K)}
$$

Error distribution $E_{C R E \mid K}^{2}(H=0.2)$

Effectivity index: $\quad 1 \leq \frac{\left\|\widehat{\sigma}_{H}-A_{\varepsilon} \nabla u_{H}^{\varepsilon}\right\|_{L^{2}(\Omega)}}{\left\|\nabla u^{\varepsilon}-\nabla u_{H}^{\varepsilon}\right\|_{L^{2}(\Omega)}} \approx 1.09$

Estimated Error \approx True Error!

Fiber composite (adaptive strategy, tolerance 5\%)

Adapted macro mesh (left), oversampling size (center), micro mesh (right)

- Split the error into various contributions (associated to H, h, oversampling ratio) in order to adapt the relevant discretization parameters
- Use the Allaire-Brizzi MsFEM variant in order to adapt wrt H, so that no additional fine-scale computations

Goal-oriented error estimation

L. Chamoin and F.L., Comput. Mech. 2021

Goal-oriented analysis

As for many a posteriori methods, our approach can be extended to estimate the error on quantities of interest, e.g. of the form

$$
Q(u)=\int_{\omega}\left[A_{\varepsilon} \nabla u\right]_{1} \quad \text { for some } \omega \subset \Omega .
$$

The procedure is classical:

- introduce the adjoint problem: let $\widetilde{u}^{\varepsilon} \in H_{0}^{1}(\Omega)$ such that

$$
\forall v \in H_{0}^{1}(\Omega), \quad \mathcal{A}_{\varepsilon}\left(v, \widetilde{u}^{\varepsilon}\right)=Q(v)
$$

- then

$$
\left|Q\left(u^{\varepsilon}\right)-Q\left(u_{H}^{\varepsilon}\right)-\bar{C}_{H}^{\varepsilon}\right| \leq \frac{1}{2} E_{\mathrm{CRE}}\left(u_{H}^{\varepsilon}\right) E_{\mathrm{CRE}}\left(\widetilde{u}_{H}^{\varepsilon}\right)
$$

where

- $E_{\text {CRE }}\left(u_{H}^{\varepsilon}\right)$ (resp. $\left.E_{\text {CRE }}\left(\widetilde{u}_{H}^{\varepsilon}\right)\right)$ is the constitutive relation error when approximating u^{ε} (resp. $\widetilde{u}_{H}^{\varepsilon}$)
- $\bar{C}_{H}^{\varepsilon}$ is a fully computable quantity (depends on $u_{H}^{\varepsilon}, \widetilde{u}_{H}^{\varepsilon}, \widehat{\sigma}_{H}$ and $\widetilde{\sigma}_{H}$)

Solving the adjoint problem

Look for $\widetilde{u}^{\varepsilon} \in H_{0}^{1}(\Omega)$ such that

$$
\forall v \in H_{0}^{1}(\Omega), \quad \mathcal{A}_{\varepsilon}\left(v, \widetilde{u}^{\varepsilon}\right)=Q(v) .
$$

In practice:

$$
\widetilde{u}^{\varepsilon}=\widetilde{u}_{\text {handbook }}^{\varepsilon}+\widetilde{u}_{\mathrm{res}}^{\varepsilon}
$$

where

- $\widetilde{u}_{\text {handbook }}^{\varepsilon}$ is a localized solution of the adjoint problem, computed using a fine discretization on some $\omega \subset \subset \Omega$
- the remainder $\widetilde{u}_{\text {res }}^{\varepsilon}$ solves

$$
\forall v \in H_{0}^{1}(\Omega), \quad \mathcal{A}_{\varepsilon}\left(v, \widetilde{u}_{\mathrm{res}}^{\varepsilon}\right)=Q(v)-\mathcal{A}_{\varepsilon}\left(v, \widetilde{u}_{\text {handbook }}^{\varepsilon}\right)
$$

In practice, MsFEM approximation for $\widetilde{u}_{\text {res }}^{\varepsilon}$.

No additional offline computation to approximate $\widetilde{u}^{\varepsilon}$

Material with defect

$$
A_{\varepsilon}(x, y)=\left[A_{\text {per }}\left(\frac{x}{\varepsilon}, \frac{y}{\varepsilon}\right)+B_{\text {defect }}\left(\frac{x}{\varepsilon}, \frac{y}{\varepsilon}\right)\right] I_{2}, \quad B_{\text {defect }}(x, y)=5 \exp \left(-\left(x^{2}+y^{2}\right)\right)
$$

Quantity of interest: $Q(u)=\int_{\omega}\left[A_{\varepsilon} \nabla u^{\varepsilon}\right]_{1}$ with $|\omega|=4 \varepsilon \times 4 \varepsilon$. Two cases:

- ω_{1} centered on the defect $\left(Q_{1}\right)$
- ω_{2} far from the defect $\left(Q_{2}\right)$

Material with defect (top: exact; bottom: MsFEM sol.)

Crude computation: no oversampling, 9×9 macro elements, $h=\varepsilon / 3$. Initial error on the Qol $\approx 25 \%$.

Material with defect (true error)

Initial error on the Qol $\approx 25 \%$ (on purpose, initial computation not so accurate).

Adapted meshes: $Q o l Q_{1}$ (left) vs Q_{2} (center) vs global (right)

The adapted mesh is much coarser for the Qol.
No systematic need to refine around the defect, only around ω !

Convergence of the error estimate

Convergence of the error estimate (top) and of the error indicators (bottom) for Q_{1} (left) and Q_{2} (right)

Another illustration: Darcy flow in porous medium

$$
-\operatorname{div}\left[A_{\varepsilon}(x) \nabla u^{\varepsilon}(x)\right]=f(x) \text { in } \Omega, \quad u^{\varepsilon}=0 \text { on } \partial \Omega
$$

Take $f=1_{K_{1}}-1_{K_{2}}$, where $\left\{\begin{array}{l}K_{1}=[0.1,0.2] \times[0.8,0.9], \\ K_{2}=[0.8,0.9] \times[0.1,0.2] .\end{array}\right.$

Following Chung et al 2016:

$$
A_{\varepsilon}(x, y)=a_{\varepsilon}(x, y) I_{2}
$$

with $a_{\varepsilon} \equiv 10^{4}$ in the fractures, $a_{\varepsilon} \equiv 1$ elsewhere.

Quantity of interest: $Q(u)=\frac{1}{\left|K_{2}\right|} \int_{K_{2}} u$ (average value of u on the outflow region K_{2}).

Darcy flow: numerical results

$\left[\nabla u^{\varepsilon}\right]_{2}$

> Primal pb (exact)

Primal pb
(MsFEM)

Adjoint problem (exact)

Crude computation: no oversampling, 10×10 macro elements, $h=H / 10$

Darcy flow: adaptive strategy (error threshold: 1\%)

Final MsFEM discretization for Q (top) and for the global error (bottom)

Conclusions

- We have introduced an a posteriori error estimation method:
- compatible with the offline/online spirit of the MsFEM approach
- ok for global error and error on quantities of interest
- Estimated Error \approx True Error (within 10\%)

Other works:

- Review article (L. Chamoin, F.L.): arXiv preprint 2110.02160
- A priori and a posteriori estimates for a different variant of MsFEM: F.L., P.-L. Rothé, C. Le Bris, U. Hetmaniuk, SIAM MMS 2022.

https://team.inria.fr/matherials/
Support from ONR and EOARD is gratefully acknowledged.

MATHerials

