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Context

‚ Progresses in materials and fabrication lead to complex designs, stressful
working regimes for which the adequacy of current sizing methods (aka
engineering rules) is not ensured.

‚ A solution is to run structure-scale computations with mesh size adapted to
the meso or micro-scale where critical phenomena are initiated.

‚ This may result in "100 Mdof models even for small cases.
‚ To handle this, we need distributed data and adapted solvers.
‚ To ensure quality we need adapted error estimators, parallel remeshers and

recycling strategies.

(a) (b)Figure: LEAP engine, combustion chamber (Safran)

This presentation is based on work from before 2015, much progress was done
since then, but not by me.
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Classical linear elasticity problem

Ω open polyhedral domain of Rd (d “ 2 ou 3), H: Hooke’s tensor
Load: body force f P L2pΩq,
bcs: Neumann g P L2pBnΩq, Dirichlet ud P H1{2pBd Ωq.

Usual variational formulation
Kinematically admissible displacement (H1pΩq):
KApΩq “ tu P H1pΩq, u “ ub sur Bd Ωu

Find u P KApΩq s.t. @v P KA0pΩq,
ż

Ω
εpuq : H : εpvq dx “: apu, vq “ lpvq :“

ż

Ω
f ¨ v dx `

ż

BnΩ
g ¨ v dS

with ε the symmetric part of the gradient.

Formulation by the Error in constitutive relation1

Statically admissible stress (Hdiv pΩq)
SApΩq “ tσ P L2

sympΩq, @v P KA0pΩq,
ş

Ω σ : εpvq dx “
ş

Ω f ¨ v dx `
ş

BnΩ g ¨ v dSu

Find pu, σq P KApΩq ˆ SApΩq s.t. ecrpεpuq, σq :“ ~H´1 : σ ´ εpuq~Ω “ 0

~ε~Ω is the energy norm, in particular ~εpuq~Ω “ }u}a.

1Ladevèze, 1975.
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Classical approximation

continuous Galerkin finite element
Find uh P KAhpΩq subspace of KApΩq of finite dimension, s.t. @vh P KAh0pΩq

ruh pvhq :“ apuh, vhq ´ lpvhq “ 0

and we define σh “ H : εpuhq

Error estimation

‚ σh is not smooth Ñ ZZ2 estimator,
‚ σh R SApΩq Ñ explicit residuals,
‚ Stein’s formula Ñ constant-free explicit residuals,
‚ Error in constitutive relation (implicit residuals),
‚ Lower bound by estimation of the residual,



Classical approximation

continuous Galerkin finite element
Find uh P KAhpΩq subspace of KApΩq of finite dimension, s.t. @vh P KAh0pΩq

ruh pvhq :“ apuh, vhq ´ lpvhq “ 0

and we define σh “ H : εpuhq

Error estimation

‚ σh is not smooth Ñ ZZ2 estimator2,

‚ σh R SApΩq Ñ explicit residuals,
‚ Stein’s formula Ñ constant-free explicit residuals,
‚ Error in constitutive relation (implicit residuals),
‚ Lower bound by estimation of the residual,

Let σ̃ be a smoothing of σh,

ηZZ2 “ ~σh ´ σ̃~

Very often }u ´ uh}a » ηZZ2 but no warranty

2Zienkiewicz and Zhu, 1987.



Classical approximation

continuous Galerkin finite element
Find uh P KAhpΩq subspace of KApΩq of finite dimension, s.t. @vh P KAh0pΩq

ruh pvhq :“ apuh, vhq ´ lpvhq “ 0

and we define σh “ H : εpuhq

Error estimation

‚ σh is not smooth Ñ ZZ2 estimator,
‚ σh R SApΩq Ñ explicit residuals,2

‚ Stein’s formula Ñ constant-free explicit residuals,
‚ Error in constitutive relation (implicit residuals),
‚ Lower bound by estimation of the residual,

η2 “
ř

T h2
T } div σh ` f }2

0,T `
ř

E hE }rσhsE ¨ nE }2
0,E

}u ´ uh}2
a ď C1η2

C2η2 ď }u ´ uh}2
a ` osc2

Oscillation term: osc2 “
ř

T }hT pf ´ f̄T q}2
0,T . . .

2Verfürth, 1996, review.



Classical approximation

continuous Galerkin finite element
Find uh P KAhpΩq subspace of KApΩq of finite dimension, s.t. @vh P KAh0pΩq

ruh pvhq :“ apuh, vhq ´ lpvhq “ 0

and we define σh “ H : εpuhq

Error estimation

‚ σh is not smooth Ñ ZZ2 estimator,
‚ σh R SApΩq Ñ explicit residuals,
‚ Stein’s formula2 Ñ constant-free explicit residuals,

‚ Error in constitutive relation (implicit residuals),
‚ Lower bound by estimation of the residual,

η2
new “

ř

T h2
T p} div σh ` f }0,T ` CT

ř

EPBT

?
hE?
|T |

}rσhsE ¨ nE }0,E q2

}u ´ uh}a ď Cηnew

all constants are computable

2Gerasimov, Stein, and Wriggers, 2015.



Classical approximation

continuous Galerkin finite element
Find uh P KAhpΩq subspace of KApΩq of finite dimension, s.t. @vh P KAh0pΩq

ruh pvhq :“ apuh, vhq ´ lpvhq “ 0

and we define σh “ H : εpuhq

Error estimation

‚ σh is not smooth Ñ ZZ2 estimator,
‚ σh R SApΩq Ñ explicit residuals,
‚ Stein’s formula Ñ constant-free explicit residuals,
‚ Error in constitutive relation2 (implicit residuals),

‚ Lower bound by estimation of the residual,

Prager-Synge theorem: let û P KApΩq, σ̂ P SApΩq

}u ´ û}2
a ` ~σ ´ σ̂~2 “ ecr

2pεpûq, σ̂q

Use û “ uh and compute σ̂ from σh (aka. equilibration). Better if σ̂ » σ:

}u ´ uh}a ď ecrpεpuhq, σ̂q

2Ladevèze and Leguillon, 1983.



Classical approximation

continuous Galerkin finite element
Find uh P KAhpΩq subspace of KApΩq of finite dimension, s.t. @vh P KAh0pΩq

ruh pvhq :“ apuh, vhq ´ lpvhq “ 0

and we define σh “ H : εpuhq

Error estimation

‚ σh is not smooth Ñ ZZ2 estimator,
‚ σh R SApΩq Ñ explicit residuals,
‚ Stein’s formula Ñ constant-free explicit residuals,
‚ Error in constitutive relation (implicit residuals),
‚ Lower bound by estimation of the residual,

@ŵ P KA0pΩq,
|ruh pŵq|

}ŵ}a
ď }u ´ uh}a

ŵ must be of high order. Better if ŵ » pu ´ uhq.



Classical approximation

continuous Galerkin finite element
Find uh P KAhpΩq subspace of KApΩq of finite dimension, s.t. @vh P KAh0pΩq

ruh pvhq :“ apuh, vhq ´ lpvhq “ 0

and we define σh “ H : εpuhq

Error estimation

‚ σh is not smooth Ñ ZZ2 estimator, easy to compute, often efficient but not
rigorous (in its early versions)

‚ σh R SApΩq Ñ explicit residuals, perfect for adaptation, not for error measure-
ment

‚ Stein’s formula Ñ constant-free explicit residuals, not tested
‚ Error in constitutive relation (implicit residuals), computationally demanding

but constant free ÐÝ

‚ Lower bound by estimation of the residual, computationally demanding but
constant free and by-product of equilibration2 ÐÝ

2Díez, Parés, and Huerta, 2003.



Adaptation
For conforming elements

Given an error estimation with local (element) contributions pηT q, there are mainly
two strategies:
‚ The nested discretization method, based on the chain:

SOLVE ÝÑ ESTIMATE ÝÑ MARK ÝÑ REFINE
‚ MARK: select elements most contributing to the error (most famous:

Dörfler’s marking3)
‚ REFINE: iterative or recursive bisection of elements (even local errors

impact lots of elements)
ÝÑ lots of interesting properties (error decrease, quasi-optimality)

‚ The full remeshing technique based on the definition of map of characteristic
lengths computed using a priori estimators with the objective to have all
elements contributing identically to the error.

3Dörfler, 1996.



Linear quantities of interest

Bounds on the energy norm of the error may not be interesting for an engineer who
may prefer the error on specific values (average stress in a region, SIF around a
crack, displacement of a node. . . ).

Extractor and adjoint problem
We consider continuous linear quantities of interest of the form l̃puq.
The adjoint problem writes:

Find ũ P KA0pΩq s.t. @v P KA0pΩq, apv , ũq “ l̃pvq

Let ũh be the finite element approximation of ũ, we have:

l̃pu ´ uhq “ apu ´ uh, ũ ´ ũhq

Cauchy-Schwarz bound

|̃lpu ´ uhq| ď }u ´ uh}a}ũ ´ ũh}a ď ecrẽcr



Linear quantities of interest

Parallelogram bound
Let eh “ u ´ uh and ẽh “ ũ ´ ũh,

l̃pu ´ uhq “
1
4

¨

˚

˚

˝

}seh `
1
s

ẽh}a
looooooomooooooon

S`

´ }seh ´
1
s

ẽh}a
looooooomooooooon

S´

˛

‹

‹

‚

with s “ }ẽh}a{}eh}a

Let β
`{´

inf { sup be bounds for S`{´, we have:

β`
inf ´ β´

sup ď 4̃lpu ´ uhq ď β`
sup ´ β´

inf



Sequential recovery of admissible fields

σ̂ P SApΩq Ă Hdiv pΩq

w P KA0pΩq

‚ Element equilibration techniques
‚ Compute face tractions from σh, optimize on closed loops4 or at least on

star-patches5.
‚ Solve Neumann problems on elements with high order elements6.

‚ Flux-free technique7

‚ Using partition of unity, directly solve the error equation apeh, vq “ rhpvq

with high order on star-patches.
‚ Automatically provides both σ̂ and ŵ (for the lower bound).

The recovery involves many localized operations. Evaluating the error roughly
doubles the computational cost.

In the following we assume we have a recovery procedure pσ̂, wq “ Fpσh, f , gq.
It works for pure Neumann problems if rigid body balance is satisfied by pf , gq.

4V. Rey, Gosselet, and C. Rey, 2014.
5Pled, Chamoin, and Ladevèze, 2011.
6Babuška et al., 1994.
7Parés, Díez, and Huerta, 2006.



Parallel processing by domain decomposition methods

Domain decomposition methods

‚ DDM are a natural tool to distribute the data of a PDE.
‚ They are an active research domain since 1990’s.
‚ Major breakthrough around 2010–2015 with the propositions of strategies to

ensure solvers’ robustness (for implicit time integration).
‚ Now a rather established tool available in software suites (PetSc, HPDDM,. . . )

The many flavors of DDMs

‚ with/wo overlap,
‚ with Dirichlet/Neumann/Robin bcs,
‚ with n ě 2 levels (a bit like multigrids),
‚ with ability to run nonlinear iterations inside subdomains,
‚ with asynchronous capabilities.

Here, we will be working in the frame of non-overlapping primal or dual DDMs
(aka Dirichlet-Dirichlet and Neumann-Neumann), these methods are known under
the acronyms FETI and BDD. The theory is valid for their primal-dual extensions
FETI(DP) and BDD(C).



Two subdomains

i = internal, b = boundary = interface

Stiffness matrix and generalized efforts, independent per subdomain
ˆ

K1
ii K1

ib
K1

bi K1
bb

˙

,

ˆ

f1
i

f1
b

˙ ˆ

K2
ii K2

ib
K2

bi K2
bb

˙

,

ˆ

f2
i

f2
b

˙

Virtual assembly ÝÑ sparse pattern
¨

˝

K1
ii 0 K1

ib
0 K2

ii K2
ib

K1
bi K2

bi Kbb

˛

‚

¨

˝

u1
i

u2
i

ub

˛

‚“

¨

˝

f1
i

f2
i

fb

˛

‚ with
"

Kbb “ K1
bb ` K2

bb
fb “ f1

b ` f2
b



Domain decomposition – formulation

Introduction of neighbor’s nodal reaction λs
b

Local balance :
ˆ

K1
ii K1

ib
K1

bi K1
bb

˙ ˆ

u1
i

u1
b

˙

“

ˆ

f1
i

f1
b

˙

`

ˆ

0
λ1

b

˙

et
ˆ

K2
ii K2

ib
K2

bi K2
bb

˙ ˆ

u2
i

u2
b

˙

“

ˆ

f2
i

f2
b

˙

`

ˆ

0
λ2

b

˙

u1
b ´ u2

b “ 0
λ1

b ` λ2
b “ 0

N-subdomain version: use of assembly and trace operators
$

&

%

Ksus “ fs ` Ts T λs
b

ř

s Bsus
b “

ř

s BsTsus “ 0
ř

s Asλs
b “ 0





Bloc notations

Vector x “

¨

˚

˚

˚

˝

...
xs

...

˛

‹

‹

‹

‚

, Assembly
A “

`

. . . As . . .
˘

B “
`

. . . Bs . . .
˘, Matrix X “

¨

˚

˚

˚

˝

. . .
Xs

. . .

˛

‹

‹

‹

‚

We have:
$

&

%

Ku “ f ` TT λb
Bub “ BTu “ 0
Aλb “ 0
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FETI
[Farhat et Roux 91, 94]

Global system on domain Ω

Ku “ f

K is SPD

Substructured formulation
N non-overlapping subdomains,
conforming mesh)

Ksus “ fs ` TsT
BsT

λ
ÿ

s
BsTsus “ 0

λ = Lagrange multipliers that
connect subdomains

Classical FETI system

ˆ

F G
GT 0

˙ ˆ

λ
α

˙

“

ˆ

d
e

˙

Topology
Ts = trace operators
Bs = signed Boolean assembly operators

Local operators
Ss “ Ks

bb ´ Ks
bi K

s´1
ii Ks

ib Schur complement
Fs “ pSs q` “ TsKs` TsT Dual Schur (NtD)
Rs “ kerpKs q basis of rigid body modes

Global operators

e “ ´

´

. . . , fsT
Rs , . . .

¯T

G “ p. . . , BsTsRs , . . .q

F “
ÿ

s
BsFsBsT

“ BFBT

d “ ´
ÿ

s
BsTsKs`

fs



FETI
Preconditioner and projector

Rigid body constraint

λ0 “ QGpGT QGq´1e

P “ I ´ QGpGT QGq´1GT

Matrix Q is a SPD matrix, Q » S̃ approximates the preconditioner.

λ is sought as λ “ λ0 ` Pλ̃ where λ̃ is a solution of:

PT FPλ̃ “ PT pd ´ Fλ0q “ PT

˜

ÿ

s
BsKs`

pfs ´ BsT
λ0q

¸

Dirichlet preconditioner
This system is solved by an iterative solver, the preconditioner S̃ being

S̃ “
ÿ

s

rBsSs
rBsT

“ rBSrBT

rBs are scaled8 assembling operators / rBT “ B`

Ss are the Schur complements (Dirichlet-to-Neumann)

8Klawonn and Widlund, 2001; Rixen and Charbel Farhat, 1999.



Coarse problem and Saint-Venant’s principle

Effect of a boundary traction distribution

Resultant R1 “ R2 Resultant R3 “ 0
‚ Equal resultant ÝÑ same long range effects.
‚ Null resultant ÝÑ only local effects
‚ Null torsor ô tractions orthogonal to RBM
The coarse grid makes long range effects spread instantaneously.9.
What remains only depend on neighbors.

9[Mandel 1993, Farhat 1994 2001, Ladevèze 1999, Dohrmann 2003]



Illustration of local equilibrium
Dirichlet and Neumann bcs

Continuous displacement at the interface
û2

b ´ û1
b “ 0 ñ û2

b “ û1
b

Balanced reactions at the interface
λ̂

2
N ` λ̂

1
N “ 0 ñ λ̂

2
N “ ´λ̂

1
N

Dirichlet problem on Ωs

out of balance reactions

Neumann problem on Ωs

discontinuous displacements



Interface iterations
Dual (FETI)10 and primal (BDD)11 approaches

=

= -

Resolutions of
  Dirichlet problems

Resolutions of 
Neumann problems

SplittingSplitting

Kinematic admissibility

Static admissibility

//

//

+ coarse problem

BDD

FETI

+ no stationarity, Krylov solver is mandatory

10C. Farhat and Roux, 1994.
11Mandel, 1993.



Algorithm 1: FETI: main unknown Λ
Λ “ Initializepfs q

Local reactions λs
N “ BsT

Λ
pus

N q “ SolveN pλs
N , fs q

Compute residual r “ PT p
ř

s Bs Ts us
N q

Define local displacement ũs
b “ rBsT

r;

pλ̃s , ũs q “ SolveD pũs
b , 0q //

us
D “ us

N ´ ũs

λ
s
D “ λ

s
N ´ λ̃

s

Preconditioned residual z “ Pp
ř

s
rBs λ̃s

q

Search direction w “ z
while

a

pr, zq ą ϵ
a

pr0, z0q do
pδus

N q “ SolveN pBsT
w, 0q

p “ PT p
ř

s Bs Ts δus
N q

α “ pr, zq{pp, wq

Λ Ð Λ ` αw //
us

N Ð us
N ` αδus

N

λ
s
N “ BsT

Λ
r Ð r ´ αp

ũs
b “ rBsT

r

pλ̃s , ũs q “ SolveD pũs
b , 0q //

us
D “ us

N ´ ũs

λ
s
D “ λ

s
N ´ λ̃

s

z “ Pp
ř

s
rBs λ̃s

q

w Ð z ´ pp, zq{pp, wqw
end



Distributed admissible fields
Let ω Ă Ω
‚ Subspace of kinematically admissible fields (KA)

KApωq “

!

u P
`

H1pωq
˘d

, u “ ud on Bω
č

BuΩ
)

‚ Subspace of statically admissible fields(SA)

SApωq “

#

τ P
`

L2pωq
˘dˆd

sym ; @v P KA00pωq,

ż

ω

τ : εpvq dx “

ż

ω

f ¨ v dx `

ż

Bg Ω
Ş

Bω

g ¨ v dS
+

Global admissibility

u P KApΩq ô

ˇ

ˇ

ˇ

ˇ

ˇ

us P KApΩs q, @s

trpus q “ trpus1

q on Γps,s1q

σ P SApΩq ô

ˇ

ˇ

ˇ

ˇ

ˇ

σs P SApΩs q, @s

σs ¨ ns ` σps1q ¨ nps1q “ 0 on Γps,s1q



Construction of global admissible fields
At each iteration of FETI(DP)/BDD(C)12

‚ uD P H1pΩq continuous everywhere and in equilibrium inside subdomains,
‚ uN P H1pYΩs q in equilibrium inside subdomains, with associated interface nodal

reactions λs
N in balance between subdomains λsT

N “ BsT Λ and in balance wrt
rigid body motions and external load. Let σN be the associated FE stress field.

Figure: Subdomain and its surrounding Figure: Preprocessing before recovery

Once we have a L2 representation of interface traction, we can compute in parallel:
σ̂s

N “ FpσN , f , g , pg s,i qi q with σ̂N “ pσ̂s
N qs P SApΩq

For the construction of w P KA0pΩq we use 0-Dirichlet bc on the interface.

12A. Parret-Fréaud et al., 2010.
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The little difficulty of multiple points13

For Ωs , g s,i is typically developed on the FE basis.
Its nodal components are adjusted in order to develop the same work as λs,i

N .

At multiple points, we first need to define pλs,i
N qi from λs

N .
pλs,i

N qi is defined up to an effect-less “cyclic” stress in kerpBsT
q.

Optimization is necessary, it must take heterogeneity into account.
One neighbor communication is required.
This is equivalent to what is encountered in the Element Equilibration Technique.

Figure: Methodology for parallel stress recovery / equivalent sequential star-patch

13Augustin Parret-Fréaud et al., 2016.



First bounds

Direct transcription of the chosen bounds

ř

s Rs
Dpŵ s q

b

ř

s }ŵ s }2
a

ď }u ´ uD}a ď

d

ÿ

s
e2

crpus
D , σ̂s

N q

with

Rs
Dpŵ s q :“

¨

˚

˝

ż

Ωs

f ¨ ŵ sdΩ `

ż

Bg Ωs

g ¨ ŵ sdS ´

ż

Ωs

εpus
Dq : H : εpŵ s qdΩs

˛

‹

‚

we recall that ŵ s is 0 on the interface.



Γ-shaped structure — first upper bound14

Parallel error estimator:
}u ´ uD}a ď

b

ř

seCRpus
D , σ̂s

N qΩs

Fast convergence of the
estimator

Fast convergence of error maps

The solver converges but the error stagnates
14A. Parret-Fréaud et al., 2010.



Bounds with separated contributions

Lemma15

For FETI(DP) and BDD(C), we have:

}uD ´ uN }a “ }r}S̃ “: |r |

The energy norm of the gap between uN and uD equals the preconditioner-norm of
the residual which is naturally computed at each iteration. It can be chosen to
control the iterative solver.
Usually iterations stop when }ri }S̃ ď ϵ}r0}S̃ and typically ϵ “ 10´6.

Bounds

}u ´ uN }a ď

d

ÿ

s
e2

crpus
N , σ̂s

N q ` |r |

ř

s Rs
N pŵ s q

a

ř

s }ŵ s }a
´ |r | ď }u ´ uD}a ď

d

ÿ

s
e2

crpus
N , σ̂s

N q ` |r |

The first bound is adapted from Vohralik. The second bounds simply uses
triangular inequality.

|r | only depends on iterations, other quantities depend on the discretization and
(very) weakly on the iterations.

15Augustin Parret-Fréaud et al., 2016; V. Rey, C. Rey, and Gosselet, 2014.



Unbiased stopping criterion

Figure: Pre-cracked structure: forward and adjoint load, decomposition into 16 sd
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Figure: Envelop of the error due to the discretization and evolution of the residual



Practical considerations

When to compute bounds

‚ Evaluate discretization bounds at iteration 1 (avoid 0).
‚ Iterate until residual is smaller than the inf bound.
‚ Reevaluate the discretization bounds if they changed to much go on with iter-

ations.
‚ If needed prepare for adaptation (compute remeshing map)



Quantities of interest

Assuming same mesh is used for forward and adjoint problems

‚ Solve forward and adjoint problem at the same time using a block solver.
‚ Also use block computations for the recovery of admissible fields.
‚ Stop when both residuals are less than their inf bounds.

First bounding (based on [Ladeveze 2008] et [Rey V., Rey C. Gosselet 14])

|rLpuex q ´ rLpuD q ´ A1| ď r

a

rT z `

d

ÿ

s

e2
CRpsq

pus
N , σ̂s

N qsr

a

rrT
rz `

g

f

f

e

ÿ

s

e2
CRpsq

prupsq

N , r̂σs
N qs

ď p

a

rT z ` θdiscr qp

a

rrT
rz ` rθdiscr q

A1 “

ż

Ω
pσ̂N ´ HεpuD qq : εpruD qdΩ “

ÿ

s

λ
sT
D Ts

rupsq

D Ñ interface quantities

Second bounding (based on [Ladeveze 2008] et [Rey V., Rey C. Gosselet 14])

|rLpuex q ´ rLpuD q ´ A2| ď
1
2

r

a

rT z `

d

ÿ

s

e2
CRpsq

pus
N , σ̂s

N qsr

a

rrT
rz `

g

f

f

e

ÿ

s

e2
CRpsq

prupsq

N , r̂σs
N qs

ď
1
2

p

a

rT z ` θdiscr qp

a

rrT
rz ` rθdiscr q

A2 “

ż

Ω
pσ̂N ´ HεpuD qq : H´1 :

1
2

p r̂σN ` HεpruD qqdΩ



Application on the pre-cracked structure 2
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Figure: Loading of direct problem (blue) and adjoint problem (orange)

dof 7180
Approach dual
Algorithm FETI

Preconditioner Dirichlet
Projector Identity

SA technique SPET [Pares 06, Cottereau 07]
Local problems p+2

The interesting quantity of interest would have been the stress intensity factor
[Pannetier Ladeveze Louf 2009].
For sake of simplicity, we choose the mean of the xx component of the stress field
over a region near the crack.



Application on pre-cracked structure 2
Direct
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Quantity of interest
IH “ 3, 0019

IH `
1
4

pβ`
inf ´ β´

supq ď Iex ď IH `
1
4

pβ`
sup ´ β´

inf q

β´
inf β`

inf
1
4 β´

sup
1
4 β`

sup IH ` 1
4 pβ`

sup ´ β´

inf q IH ` 1
4 pβ`

inf ´ β´
supq

0 0 12,969 4,2554 4,1332 -0,24041
1,1025 1,5765 12,969 4,2554 3,8576 0,15372



Strategy for adaptation with recycling
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Strategy for adaptation with recycling
We select subdomains most contributing to the errors.
We use hierarchical refinement (at least on the interface)so that the building of
admissible fields remains easy.
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Figure: Distribution of error within subdomains

Mesh e re IH IHH,2
1
2 ere

Uniform 26.215 0.98905 2.4915 3.1935 12.964
Locally refined 16.662 0.51378 3.2165 0.086055 4.2803

Table: Performance of local refined for the cracked structure



Adaptation and recycling
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Figure: Erreurs de discrétisation et résidus au cours des itérations



Conclusion

‚ The recovery of admissible fields can be fully parallel (after just one neighbor
communication).

‚ There are inf and sup bounds of the error which separates the contribution of
the solver and of the discretization.

‚ We can stop the iterative solver based on an unbiased criterion. In practice
the discretization error quickly dominates.

‚ If quantity of interest are wanted, block solvers can be used.
‚ For the adaptation, hierarchical refinement of interfaces allows to reuse the

numerical information.
Ongoing and future work:
‚ Real implementation for HPC, with improved sequential recovery techniques.
‚ Error estimation for nonlinear problems16 with separation of sources17 with

nonlinear DD solvers18.
‚ More evolved marking and refinement techniques with good load balancing

Ñ adaptation of the mesh and of the decomposition.

16Ladevèze, 2008.
17El Alaoui, Ern, and Vohralik, 2010; Moës, 1996.
18Dolean et al., 2015; Klawonn, Lanser, and Rheinbach, 2014; Negrello et al., 2016.
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