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2022 summer school on numerical analysis
EDF Lab, June 27
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Motivation

We will be concerned with PDE problems in a domain Ω ⊂ R3 with solution u.

We will compute a FE approximation uh, build on a mesh Th.

Our ideal goal is to compute quantities ηK called “estimators” such that

ηK ' |||u − uh|||K

for all K ∈ Th.

These “error estimators” are useful to
(i) reliably assess the error, and
(ii) drive adaptive refinement processes.
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Reliability and efficiency

Efficiency

ηK ≤ Ceff |||u − uh|||K̃

Reliability

|||u − uh|||Ω ≤ Crelη, η2 :=
∑
K∈Th

η2
K .

The goal is to design ηK such that Ceff and Crel are as “nice” as possible.
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Why flux equilibration?

Equilibrated estimators are one of the many families of estimators available.

With “traditional” estimators, we have Crel = Crel(κTh , p), Ceff = Ceff(κTh , p).

With equilibrated estimators, we have Crel = 1 and Ceff = Ceff(κTh ).

In words, we have a “guaranteed upper bound” and which is “p-robust”.
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A quick literature review before actually starting

Flux equilibration for scalar problems:

Prager and Synge, 1947: the initial idea

Destuynder and Métivet, 1999: efficient flux construction

Braess, Pillwein and Schöberl, 2009: p-robustness in 2D

Ern and Vohraĺık, 2020: p-robustness in 3D

Flux equilibration for magnetostatic problems:

Braess and Schöberl, 2008: lowest–order case

Gedicke, Geevers and Perugia, 2020: arbitrary–order

Gedicke, Geevers, Perugia and Schöberl, 2021: p-robustness

Chaumont-Frelet and Vohraĺık, 2021: today’s menu
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1 Equilibration for the Poisson problem

2 Equilibration for the magnetostatic problem

3 Numerical examples



Equilibration for the Poisson problem



Equilibration for the Poisson problem

A brief physical discussion



The Poisson problem

Well, mathematically, it’s just: find u : Ω→ R such that{
−∆u = ρ in Ω,

u = 0 on ∂Ω,

where ρ : Ω→ R is given.

For reasons that will become clear soon, I’d like to give a “physical” context.

Consider a vacuum Ω enclosed by a perfect conductor.
Choose units such that ε0 = 1.
Consider a charge density ρ : Ω→ R.

We want to model the electric field E : Ω→ R3.

6/61 T. Chaumont-Frelet, A. Ern and M Vohraĺık Equilibrated error estimators for magnetostatic problems



Poisson = Gauss + Faraday

Gauss’ law (with ε0 = 1):
∇ · E = ρ in Ω.

Faraday’s law (with ∂tB = o):

∇× E = o in Ω, E × n = o on ∂Ω.

Assuming Ω is simply-connected we can rephrase Faraday’s law:
There exists an electric potential u, with u = 0 on ∂Ω such that

E = −∇u

Combining both laws, we get back where we started:{
−∆u = ρ in Ω,

u = 0 on ∂Ω.
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Equilibration for the Poisson problem

Discretization and main ideas



Variational formulation and discretization

Assuming that ρ ∈ L2(Ω), we seek u ∈ H1
0 (Ω) such that

(∇u,∇v)Ω = (ρ, v)Ω

for all v ∈ H1
0 (Ω).

Given p ≥ 0, we consider the conforming Lagrange FE space

Vh := Pp+1(Th) ∩ H1
0 (Ω)

where Th is a simplicial mesh of Ω.

We compute the discrete approximation uh ∈ Vh by solving

(∇uh,∇vh)Ω = (ρ, vh)Ω

for all vh ∈ Vh.
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Which physical laws are satisfied?

Let us call Ẽ h := −∇uh the electric field approximation.

By construction, Ẽ h does satisfy Faraday’s law:
it is the gradient of the (conforming) potential uh ∈ H1

0 (Ω).

On the other hand, Ẽ h violates Gauss’ law. We do not have

“∇ · Ẽ h = ρ”,

and actually, it is not even true that “Ẽ h ∈ H(div,Ω)”.

E being the unique field satisfying both laws,
“measuring” how Gauss’ law is violated by Ẽ h provides a bound on

‖E − Ẽ h‖Ω = ‖∇(u − uh)‖Ω.
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How do we “measure” Gauss’ law violation?

We call “equilibrated flux” any field E h ∈ H(div,Ω) such that ∇ · E h = ρ.

Equilibrated fluxes are those fields satisfying Gauss’ law.

Consider the minimization problem

min
Eh∈H(div,Ω)

∇·Eh=ρ

‖E h + ∇uh‖Ω.

The minimum is zero if and only if the error is zero.
Indeed, then E h = −∇uh =: Ẽ h satisfies Gauss’ law.

We want to build a flux E h (i.e. a field satisfying Gauss’ law) close to −∇uh.

10/61 T. Chaumont-Frelet, A. Ern and M Vohraĺık Equilibrated error estimators for magnetostatic problems



Equilibration for the Poisson problem

The Prager–Synge inequality



The Prager–Synge inequality

Equilibrated flux

E h ∈ H(div,Ω) ∇ · E h = ρ

Prager–Synge inequality

‖∇(u − uh)‖Ω ≤ ‖E h + ∇uh‖Ω

Saturation of the bound

‖∇(u − uh)‖Ω = ‖(−∇u) + ∇uh‖Ω
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The proof is easy!

Consider an equilibrated flux E h and any v ∈ H1
0 (Ω). We have

(∇(u − uh),∇v)Ω = (ρ, v)Ω − (∇uh,∇v)Ω

= (∇ · E h, v)Ω − (∇uh,∇v)Ω

= −(E h + ∇uh,∇v)Ω.

Picking v = u − uh, the result follows:

‖∇(u − uh)‖Ω ≤ ‖E h + ∇uh‖Ω

for all equilibrated fluxes E h.
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Equilibration for the Poisson problem

Practical construction of discrete fluxes



Piecewise polynomial right-hand sides

In the remainder of the talk, we will assume for simplicity that ρ ∈ Pp(Th).

General rhs can be considered, by adding “oscillation” terms in the estimator.

This assumption allows the construction of discrete fluxes E h.
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Raviart–Thomas elements

We want to construct discrete functions E h ∈ H(div,Ω) with ∇ · E h ∈ Pp(Th).

The “correct” tool for this is the Raviart–Thomas FE space

RT p(Th) ∩H(div,Ω).

The following key property holds true:

∇ · [RT p(Th) ∩H(div,Ω)] = Pp(Th).

There exist discrete fluxes E h ∈ RT p(Th) ∩H(div,Ω) such that ∇ · E h = ρ.
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The “ideal” discrete flux

The ideal discrete flux is the one minimizing the upper bound, i.e.,

E h := arg min
vh∈RTp(Th)∩H(div,Ω)

∇·vh=ρ

‖v h + ∇uh‖Ω.

It is fully computable: find E h ∈ RT p(Th) ∩H(div,Ω) and q ∈ Pp(Th) s.t.{
(E h, v h)Ω + (qh,∇ · v h) = −(∇uh, v h) ∀v h ∈ RT p(Th) ∩H(div,Ω),

(∇ · E h,wh) = −(ρ,wh) ∀wh ∈ Pp(Th).

There are, however, two issues:
(i) the above problem is more expensive than the one we started with, and
(ii) it is not clear that we will obtain local informations.
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Equilibration for the Poisson problem

Localization



Localization

We have the “ideal” discrete definition

E h := arg min
vh∈RTp(Th)∩H(div,Ω)

∇·vh=ρ

‖v h + ∇uh‖Ω.

We can observe that it is the discrete version of

E := arg min
v∈H(div,Ω)

∇·v=ρ

‖v + ∇u‖Ω,

for which E = −∇u.

The definition E h thus mimics the one of E as a minimizer.

The idea is then to decompose E into local contributions E a,
and to define local contributions E a

h by mimicking E a.
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Partition of unity

Let Vh denotes the set of vertices of the mesh Th.
Let ψa denote the “hat function” associated with a ∈ Vh.
Then:

(i) we always have have ψa ∈ Vh for all p ≥ 0,

(ii) ψa is supported in the patch ωa of elements K ∈ Th sharing the vertex a,

(iii) we have the partition of unity property∑
a∈Vh

ψa = 1.
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Localization of the continuous flux

Consider E a := ψaE . Then, we have

E =
∑
a∈Vh

E a.

In addition, we actually have E a = −ψa∇u ∈ H0(div, ωa), and

∇ · E a = ψaρ−∇ψa ·∇u.

We thus have the characterization

E a = min
v∈H0(div,ωa)

∇·v=ψaρ−∇ψa ·∇u

‖v + ψa∇u‖ωa .

At boundary nodes a ∈ Vh these definitions are slightly adapted.
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Local construction of a discrete flux

At the continuous level, we arrived at

E a = arg min
v∈H0(div,ωa)

∇·v=ψaρ−∇ψa ·∇u

‖v + ψa∇u‖ωa .

This motivates the discrete definition

E a
h := arg min

vh∈RTp+1(Ta)∩H0(div,ωa)

∇·vh=ψaρ−∇ψa ·∇uh

‖v h + ψa∇uh‖ωa .

Does this definition make sense?
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The magic of Galerkin orthogonality

Recall the minimization problem

min
vh∈RTp+1(Ta)∩H0(div,ωa)

∇·vh=ψaρ−∇ψa ·∇uh

‖v h + ψa∇uh‖ωa .

Stokes’ formula implies that the compatibility condition∫
ωa
ψaρ−∇ψa ·∇uh = 0

must be satisfied! Because ψa ∈ Vh, it “magically” works, since

0 = (ρ, ψa)Ω − (∇uh,∇ψa)Ω =

∫
ωa
ψaρ−∇ψa ·∇uh.

The degree of the polynomials is also properly chosen.
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Gluing the pieces together

We have properly defined local contributions

E a
h := arg min

vh∈RTp+1(Ta)∩H0(div,ωa)

∇·vh=ψaρ−∇ψa ·∇uh

‖v h + ψa∇uh‖ωa .

Setting

E h :=
∑
a∈Vh

E a
h,

we have E h ∈ H(div, ωa) thanks to the b.c. of each E a
h, and

∇ · E h =
∑
a∈Vh

(ψaρ−∇ψa ·∇uh)

=

∑
a∈Vh

ψa

 ρ−∇

∑
a∈Vh

ψa

 ·∇uh

= ρ.

We have successful defined an equilibrated flux from local prescriptions!
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Summary of the construction

(i) Compute the discrete solution uh ∈ Vh by solving the linear system

(∇uh,∇vh)Ω = (ρ, vh)Ω ∀vh ∈ Vh.

(ii) For each a ∈ Vh, compute the local field contribution

E a
h := arg min

vh∈RTp+1(Ta)∩H0(div,ωa)

∇·vh=ψaρ−∇ψa ·∇uh

‖v h + ψa∇uh‖Ω

by solving small uncoupled linear systems with Lagrange multipliers.

(iii) Assemble the local contributions

E h :=
∑
a∈Vh

E a
h

(iv) E h is an equilibrated flux, so that we have

‖∇(u − uh)‖Ω ≤ ‖E h + ∇uh‖Ω.
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Equilibration for the Poisson problem

Efficiency



Efficiency

Our estimator is
η := ‖E h + ∇uh‖Ω,

and we may associate with element K ∈ Th

ηK := ‖E h + ∇uh‖K .

Then, it is possible to show that

ηK ≤ Ceff‖∇(u − uh)‖K̃ ,

with a constant Ceff independent of p.

Unfortunately, I have no time for the proofs, which are technical.
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Equilibration for the Poisson problem

Takeaways



Takeaways

Equilibrated fluxes provide guaranteed bounds via the Prager–Synge inequality.

For the Poisson problem, Raviart–Thomas elements are natural for the flux.

The flux may be computed by solving local mixed FE problems.

For this particular flux construction, we have p-robust efficiency estimates.
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Equilibration for the magnetostatic problem



Equilibration for the magnetostatic problem

Another brief physical interpretation



The magnetostatic problem

Mathematically, the problem consists in finding A : Ω→ R3 such that
∇×∇× A = J in Ω,

∇ · A = 0 in Ω,
A× n = o on ∂Ω,

where J : Ω→ R3 is a given rhs s.t. ∇ · J = 0.

As before, it is made out of two physical laws.

We still assume that Ω is a vacuum enclosed by a conductor.
We choose units such that µ0 = 1.
J is now a “current density”.

What we want to model is the magnetic field H : Ω→ R3.
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The two physical laws

Ampere’s law:
∇×H = J in Ω.

Absence of magnetic monopoles (with µ0 = 1):

∇ ·H = 0 in Ω, H · n = 0 on ∂Ω.

There exists a “magnetic potential” A : Ω→ R3 s.t.

∇× A = H in Ω A× n = o on ∂Ω.

We then arrive at the “curl–curl” problem:{
∇×∇× A = J in Ω,

A× n = o on ∂Ω.
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Equilibration for the magnetostatic problem

Discretization and main ideas



Variational formulation and discretization

Assuming that J ∈ H(div0,Ω), we seek A ∈ H0(curl,Ω) and q ∈ H1
0 (Ω) s.t.{

(∇× A,∇× v)Ω + (∇q, v)Ω = (J , v)Ω ∀v ∈ H0(curl,Ω),
(A,∇w)Ω = 0 ∀w ∈ H1

0 (Ω).

For the discretization we introduce the Nédélec FE space

W h := Np(Th) ∩H0(curl,Ω).

The discrete formulation is to seek Ah ∈W h and qh ∈ Vh s.t.{
(∇× Ah,∇× v h)Ω + (∇qh, v h)Ω = (J , v h)Ω ∀v ∈W h,

(Ah,∇wh)Ω = 0 ∀wh ∈ Vh.
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Removing the Lagrange multipliers

We can show that q = 0 and qh = 0, so that we actually have

(∇× A,∇× v)Ω = (J , v)Ω ∀v ∈ H0(curl,Ω),

and
(∇× Ah,∇× v h)Ω = (J , v h)Ω ∀v h ∈W h,

which is the “H(curl) version” of the (∇·,∇·)Ω problem.
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Which laws are actually satisfied?

Let us call H̃h := ∇× Ah the magnetic field approximation.

Then by construction, H̃h satisfies the “no magnetic monopoles” law:
it is the curl of a (conforming) magnetic potential Ah ∈ H0(curl,Ω).

On the other hand, it violates Ampere’s law, and we do not have

“∇× H̃h = J ′′

and actually, it is not even true that H̃h ∈ H(curl,Ω).

We now want to “measure” how Ampere’s is violated to provide a bound on

‖H − H̃h‖Ω = ‖∇× (A− Ah)‖Ω.
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Equilibration for the magnetostatic problem

The Prager–Synge inequality in H(curl)



The Prager–Synge inequality in H(curl)

Equilibrated flux

Hh ∈ H(curl,Ω) ∇×Hh = J

Prager–Synge inequality

‖∇× (A− Ah)‖Ω ≤ ‖Hh −∇× Ah‖Ω

Saturation of the bound

‖∇× (A− Ah)‖Ω = ‖(∇× A)−∇× Ah‖Ω
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Equilibration for the magnetostatic problem

Practical construction of discrete fluxes



Piecewise polynomial right-hand sides

From now on, we will assume for simplicity that J ∈ RT p(Th) ∩H(div0,Ω).

This assumption allows for discrete fluxes Hh ∈ Np(Th) ∩H(curl,Ω).

General rhs can be considered, by adding “oscillation” terms in the estimator.
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The “ideal” discrete flux

The ideal discrete flux is the one minimizing the upper bound, i.e.,

Hh := arg min
vh∈Np(Th)∩H(curl,Ω)

∇×vh=J

‖v h −∇× Ah‖Ω.

It is actually fully computable, but as before, there are two issues:
(i) the above problem is more expensive than the one we started with, and
(ii) it is not clear that we will obtain local informations.
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Equilibration for the magnetostatic problem

Localization



Intuitive localization

Consider Ha = ψa∇× A. We have

∇×Ha = ψa∇×∇× A + ∇ψa ×∇× A = ψaJ + ∇ψa ×∇× A,

so that
Ha = arg min

v∈H0(curl,ωa)
∇×v=ψaJ+∇ψa×∇×A

‖v − ψa∇× A‖ωa .

It is thus tempting to “define” a local flux contribution by

Ha
h := arg min

vh∈Np+1(Ta)∩H0(curl,ωa)

∇×vh=ψaJ+∇ψa×∇×Ah

‖v − ψa∇× Ah‖ωa ,

but is it a sound definition?
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The key problem

The minimization problem

min
vh∈Np+1(Ta)∩H0(curl,ωa)

∇×vh=ψaJ+∇ψa×∇×Ah

‖v h − ψa∇× Ah‖ωa ,

is “wrong”, because the minimization is empty!

The problem is that

∇ · (ψaJ + ∇ψa ×∇× Ah) 6= 0,

and actually, we do not even have

“ψaJ + ∇ψa ×∇× Ah ∈ H(div, ωa)”!

We need to work on the ∇ψa ×∇× Ah term.
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Equilibration for the magnetostatic problem

Fixing the “bad” term



The “bad” term

At the continuous level, we would like to set Ha := ψa∇× A, so that

Ja := ∇×Ha = ψaJ + ∇ψa ×∇× A ∈ H0(div0, ωa).

Let us set θa := ∇ψa ×∇× A, so that Ja = ψaJ + θa.

This “obvious” discrete counterpart ∇ψa ×∇× Ah is “wrong”.
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What are the key properties of θa?

We want to impose that ∇×Ha = Ja. So that we must have

Ja ∈ H0(div0, ωa) and
∑
a∈Vh

Ja = J .

For θa, what it means is that

θa ∈ H0(div, ωa) with ∇ · θa = −∇ · (ψaJ) = −∇ψa · J

and ∑
a∈Vh

θa = o.

The goal is to “tweak” ∇ψa ×∇× Ah to obtain these two properties!
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The plan

We are going to achieve this goal in two steps.

Step 1: construct θ̂
a
h ∈ RT p(Ta) ∩H0(div, ωa) such that

∇ · θ̂
a
h = −∇ψa · J ,

but with
θ̂h :=

∑
a∈Vh

θ̂
a
h 6= o.

Step 2: compute a correction θ̃
a
h ∈ RT p+1(Ta) ∩H0(div, ωa) such that

∇ · θ̃
a
h = 0

and ∑
a∈Vh

θ̃
a
h = θ̂h.

Then, θa
h := θ̂

a
h − θ̃

a
h does the job!
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Step 2: the key idea

The summed contribution from the first step necessarily satisfies ∇ · θ̂h = 0.

Assume that you are given v h ∈ RT p(Th) ∩H(div0,Ω).
Can you break down v h into local contributions v a

h ∈ RT p+1(Ta)∩H0(div0, ωa)?
Unfortunately, you cannot do it (from local computations) in general!

However, we “discovered” that it is feasible if one further requires that

(v h, r 0)Ω = 0 ∀r 0 ∈ P0(Th).
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Step 2: the solution

Assume that v h ∈ RT p+1(Th) ∩H(div0,Ω) satisfies

(v h, r 0)Ω = 0 ∀r 0 ∈ P0(Th).

We can define v a
h ∈ RT p+1(Ta) ∩H0(div0, ωa) on each K ∈ Ta with

v a
h|K := arg min

wa
h∈RTp+1(K)

∇·wa
h=0 in K

wa
h·nK =ψavh·nK on ∂K

‖w a
h − ψav h‖K ,

because the compatibility condition is satisfied:

(ψav h · nK , 1)∂K = (ψa, v h · nK )∂K = (∇ψa, v h)K + (ψa,∇ · v h)K = 0

since ∇ψa ∈ P0(Th).

This solves the problem, since after some computations, one can show that∑
a∈Vh

v a
h = v h.
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Step 1: the natural idea

We want local contributions θ̂
a
h ∈ RT p(Ta) ∩H0(div, ωa) such that

∇ · θ̂
a
h = −∇ψa · J .

The “natural candidate” is ∇ψa ×∇× Ah, but it does not work.

The first natural idea is then to set

θ̂
a
h := arg min

vh∈RTp(Ta)∩H0(div,ωa)

∇·vh=−∇ψa ·J

‖v h −∇ψa ×∇× Ah‖ωa .

Unfortunately, it does not lead to (θ̂h, r 0)Ω = 0 for all r 0 ∈ P0(Th).
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Step 1: the key idea

The key idea is to over-constrain the minimization problem to ensure that

(θ̂h, r 0)Ω = 0 r 0 ∈ P0(Th).

We then set

θ̂
a
h := arg min

vh∈RTp(Ta)∩H0(div,ωa)

(vh−∇ψa×∇×Ah,r0)ωa =0 ∀r∈P0(Ta)
∇·vh=−∇ψa ·J

‖v h −∇ψa ×∇× Ah‖ωa ,

with the additional contraint that

(θ̂
a
h −∇ψa ×∇× Ah, r 0)ωa = 0 ∀r 0 ∈ P0(Ta).

This would solve the problem, but is this a sound definition?
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Step 1: the problem?

We want to set

θ̂
a
h := arg min

vh∈RTp(Ta)∩H0(div,ωa)

(vh−∇ψa×∇×Ah,r0)ωa =0 ∀r∈P0(Ta)
∇·vh=−∇ψa ·J

‖v h −∇ψa ×∇× Ah‖ωa ,

but we have to check that the minimization set is not empty.

The issue is that we could take r 0 = ∇q for q ∈ P1(Ta) ∩ H1(ωa), and then

0 = (v h −∇ψa ×∇× Ah,∇q)ωa

and after integration by parts

(∇ · v h, q) = −(∇ψa ×∇× Ah,∇q)ωa .

There are duplicated constraints on the divergence!
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Step 1: the magic of Galerkin orthogonality strikes again

Recall that we have the “hidden” constraint that

(∇ · v h, q) = −(∇ψa ×∇× Ah,∇q)ωa ∀q ∈ P1(Ta) ∩ H1(ωa)

which could interfere with the divergence constraint ∇ · v h = −∇ψa · J .

Fortunately, we can show that

−(∇ψa ×∇× Ah,∇q)ωa = (∇× Ah,∇ψa ×∇q)ωa

= (∇× Ah,∇× (ψa∇q))ωa

= (J , ψa∇q) = (ψaJ ,∇q)

by Galerkin orthogonality as ψa∇q ∈W h.

We are saved: the hidden constraint agrees with divergence constraint!
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Equilibration for the magnetostatic problem

Summary of the construction



Summary of the construction

Our construction now has three steps.

Step 1: compute θ̂
a
h through over-constrained minimization problems.

Step 2: decompose θ̂h into a divergence free decomposition θ̃
a
h

Step 3: set θa
h := θ̂

a
h − θ̃

a
h, and compute Ha

h.
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Step 1

Solve the patch-wise Raviart–Thomas element problems

θ̂
a
h := arg min

vh∈RTp(Ta)∩H0(div,ωa)

(v−∇ψa×Ah,r0)ωa =0 ∀r∈P0(Ta)
∇·vh=−∇ψa ·J

‖v h −∇ψa × Ah‖ωa ,

and assemble
θ̂h :=

∑
a∈Vh

θ̂
a
h.
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Step 2

Solve the element-wise Raviart–Thomas problems

θ̃
a
h|K := arg min

vh∈RTp+1(K)
∇·vh=0 in K

va
h·nK =ψavh·nK on ∂K

‖v a
h − ψaθ̂h‖K ,

and set
θa
h := θ̂

a
h − θ̃

a
h.
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Step 3

Solve the patch-wise Nédélec element problems

Ha
h := arg min

vh∈Np+1(Ta)∩H0(curl,ωa)

∇×vh=ψaJ+θa
h

‖v h − ψa∇× Ah‖ωa .

The Nédélec function
Hh :=

∑
a∈Vh

Ha
h

is an equilibrated flux.
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Equilibration for the magnetostatic problem

Efficiency



Efficiency

Our estimator is
η := ‖Hh −∇× Ah‖Ω,

and we may associate with element K ∈ Th

ηK := ‖Hh −∇× Ah‖K .

Then, it is possible to show that

ηK ≤ Ceff‖∇× (A− Ah)‖ ˜̃
K
,

with a constant Ceff independent of p.
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Equilibration for the magnetostatic problem

Takeaways



Takeaways

The equilibration technology of the Poisson problem extends.

We can build a Nédélec flux using small uncoupled local FE problems.
The algorithm is efficient, but its implementation is harder than for Poisson.

We obtain guaranteed upper bounds.

We also have p-robust efficiency estimates, but in slightly enlarged patches.
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Numerical examples



Numerical examples

Finite regularity with polynomial rhs



Settings

We consider the case where

Ω := (0, 1)3 J := (0, 0, 1).

The solution is given by A = (0, 0,A3) with

A3(x) :=
16

π4

∑
n,m≥1

1

nm(n2 + m2)
sin(nπx1) sin(mπx2).

This function belongs to H3(Ω) but not to H4(Ω).
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51/61 T. Chaumont-Frelet, A. Ern and M Vohraĺık Equilibrated error estimators for magnetostatic problems



p-refinements

1 2 3 4 5 6

10−3

10−2

err

η

p (structured mesh)

E
rr

or
an

d
es

ti
m

at
e

1 2 3 4 5 6
10−4

10−3

10−2

err

η

p (unstructured mesh)

E
rr

or
an

d
es

ti
m

at
e

1 2 3 4 5 6

1.06

1.08

1.1

1.12

1.14

η
err

p (structured mesh)

E
ff

ec
ti

vi
ty

in
d

ex

1 2 3 4 5 6

1.04

1.06

1.08

1.1

η
err

p (unstructured mesh)

E
ff

ec
ti

vi
ty

in
d

ex
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Numerical examples

Analytical solution with a general right-hand side



Settings

We now consider the case where

Ω := (0, 1)3 J := 8π2(sin(2πx2) sin(2πx3), 0, 0).

The associated solution is analytic:

A := (sin(2πx2) sin(2πx3), 0, 0).
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Numerical examples

Adaptivity with a singular solution



Settings

We consider an L-shape example where Ω := L× (0, 1), with

L := {x = (r cos θ, r sin θ); |x1|, |x2| ≤ 1, 0 ≤ θ ≤ 3π/2} .

The right-hand side J is non-polynomial and chosen such that

A(x) =
(
0, 0, χ(r)rα sin(αθ)

)
,

where
α := 3/2, r 2 := |x1|2 + |x2|2, (x1, x2) = r(cos θ, sin θ),

and χ : (0, 1)→ R is a smooth cutoff function.

We couple the estimator with Dörfler’s marking to construct adaptive meshes.
We select p = 2 and an initial mesh made of 415 elements.

56/61 T. Chaumont-Frelet, A. Ern and M Vohraĺık Equilibrated error estimators for magnetostatic problems



Adpative h-refinements

104 105

10−1

err

η

N
−2/3
dof

Ndofs

E
rr

or
an

d
es

ti
m

at
e

0 5 10

1

1.1

1.2

η
err

Adaptive refinement

E
ff

ec
ti

vi
ty

in
d

ex
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Initial mesh and estimator
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Mesh and estimator at iterator # 5
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Mesh and estimator at iterator # 10
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Concluding remarks

Takeaways



Takeaways

We now have two approaches to build equilibrated estimators in H(curl):

Gedicke, Geevers, Perugia and Schöberl, 2021

Chaumont-Frelet and Vohraĺık, 2021

Both approaches lead to gauranteed and p-robust error bounds.

Both algorithms are efficient, but have “tricky” implementations.

It is possible to handle more complicated problems:

Chaumont-Frelet, soon: time-harmonic Maxwell’s equations

Simplified equilibration strategies (with coarser upper bounds) are possible:

Chaumont-Frelet, Ern and Vohraĺık, 2021: broken patchwise equilibration

Chaumont-Frelet, 2021: alternative Prager–Synge
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